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The Role of Electronic Structure Methods in ICME 

•  A wide variety of relevant properties can be calculated from 
knowledge of atomic numbers alone 
–  Elastic constants 
–  Finite-temperature thermodynamic and transport properties  
–  Energies of point, line and planar defects 

•  For many classes of systems accuracy is quite high 
–  Can be used to obtain “missing” properties in materials design when 

experimental data is lacking, hard to obtain, or “controversial” 
–  Can be used to discover new stable compounds with target properties 

•  The starting point for “hierarchical multiscale” modeling 
–  Enables development of interatomic potentials for larger-scale classical 

modeling 
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Materials Data for Discovery & Design 

A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, 
Applied Physics Letters Materials, 2013, 1(1), 011002. 

https://www.materialsproject.org/ 
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Materials Data for Discovery & Design 
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Materials Data for Discovery & Design 
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Outline 

•  Formalism 
–  Hydrogen Atom 
–  Density Functional Theory 

•  Exchange-Correlation Potentials 
•  Pseudopotentials and Related Approaches 
•  Some Commercial and Open Source Codes 

•  Practical Issues 
–  Implementation 

•  Periodic boundary conditions 
•  k-Points 
•  Plane-wave basis sets 

–  Parameters controlling numerical precision 

•  Example Exercise 
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Introduction 
The Hydrogen Atom  

Proton with mass M1, coordinate R1 
Electron with mass m1, coordinate r1 
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Hydrogen Atom 
Switch to Spherical Coordinates  
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Hydrogen Atom 
Wavefunctions 

n = 1, 2, 3, … 
l = 0 (s), 1(p), 2(d), …, n-1 

Probability densities through the xz-plane for the 
electron at different quantum numbers (l, across 
top; n, down side; m = 0) 

http://en.wikipedia.org/wiki/Hydrogen_atom 

http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/HydrogenAtom.htm 
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The Many-Electron Problem 

•  Collection of 
–  N ions 
–  n electrons 

•  Analytical solution like 
that for hydrogen atom 
not available 

electrons 

ions 
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Born-Oppenheimer Approximation 
•  Mass of nuclei exceeds that of the electrons by a factor of 

1000 or more 
–  we can neglect the kinetic energy of the nuclei 
–  treat the ion-ion interaction classically 
–  significantly simplifies the Hamiltonian for the electrons 

•  Consider Hamiltonian for n electrons in potential of N 
nuclei with atomic numbers Zi 
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Density Functional Theory 
Hohenberg and Kohn (1964), Kohn and Sham (1965) 

•  For each external potential there is a unique ground-
state electron density 

•  Energy can be obtained by minimizing of a density 
functional with respect to density of electrons n(r) 

Egroundstate=min{Etot[n(r)]} 

€ 

Etot n r( )[ ] =T n r( )[ ] +Eint n r( )[ ] + drVext r( )∫ n r( ) +Eion−ion

Kinetic Energy Electron-Electron 
Interactions 

Electron-Ion 
Interactions 
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Kohn-Sham Approach 
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Kohn-Sham Equations 
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Local Density Approximation 
(e.g., J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)) 
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Electron Gas of Density n(r)
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Generalized Gradient Approximation 
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 
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A Note on Accuracy and Ongoing Research 

•  LDA often leads to “overbinding” 
−  Lattice constants can be 1-3 % too small, elastic constants 10-15 % 

too stiff, cohesive energies 5-20 % too large 

•  BUT, errors are largely systematic 
− Energy differences tend to be more accurate 

•  GGA corrects for overbinding 
− Sometimes “overcorrects” 

•  “Beyond DFT” Approaches 
−  For “highly correlated” systems LDA & GGA perform worse and 

corrections required (DFT+U, Hybrid Hartree-Fock/DFT, Meta-GGA, 
DMFT, …) 

− Non-bonded interactions, e.g., van der Waals interactions in graphite, 
require additional terms or functionals (e.g., vdW-DF) 
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Pseudopotentials 

•  Potential due to ions is 
singular at ion core 

•  Eigenfunctions oscillate 
rapidly near singularity 

•  Eigenfunction in bonding 
region is smooth 
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Pseudopotentials 

•  For plane-wave basis sets, rapid oscillations 
require large number of basis functions 
–  expensive 
–  unnecessary 

•  these oscillations don't alter bonding 
properties 

•  Replace potential with nonsingular potential 
–  preserve bonding tails of eigenfunction 
–  preserve distribution of charge between core 

and tail regions 
–  reduces number of plane waves required for 

accurate expansion of wavefunction 
•  Transferable 

–  developed from properties of isolated atoms 
–  applied in other situations 

φ

φpseudo
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Summary of Approaches 

•  Pseudopotentials 
–  Core electrons removed from problem and enter only in their 

effect of the pseudopotential felt by the valence electrons 
–  Kohn-Sham equations solved for valence electrons only 

•  “Augment” Plane Waves with atomic-like orbitals 
–  An efficient basis set that allows all electrons to be treated in the 

calculations 
–  Basis for “all-electron” codes 

•  Projector-Augmented-Wave method 
–  Combines features of both methods 
–  Generally accepted as the basis for the most accurate approach 

for calculations requiring consideration of valence electrons only 



DFT Lecture, The 7th Summer School for Integrated Computational Materials Education   

Some of the Widely Used Codes 

•  VASP (http://cms.mpi.univie.ac.at/vasp/) 
–  Commercial, Plane-Wave Basis, Pseudopotentials and PAW 

•  PWSCF (http://www.quantum-espresso.org/) 
–  Free (and available to run on nanohub), Plane-Wave Basis, 

Pseudopotentials and PAW 

•  CASTEP (http://ccpforge.cse.rl.ac.uk/gf/project/castep/) 
–  Free in UK, licensed by Accelrys elsewhere, Plane-Wave Basis, 

Pseudopotentials 

•  ABINIT (http://www.abinit.org/) 
–  Free (and available to run on nanohub), plane-wave basis, 

pseudopotentials and PAW 

•  WIEN2K (http://www.wien2k.at/) 
–  Commercial (modest license fee), all-electron augmented wave method 
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Outline 

•  Formalism 
–  Hydrogen Atom 
–  Density Functional Theory 

•  Exchange-Correlation Potentials 
•  Pseudopotentials and Related Approaches 
•  Some Commercial and Open Source Codes 

•  Practical Issues 
–  Implementation 

•  Periodic boundary conditions 
•  k-Points 
•  Plane-wave basis sets 

–  Parameters controlling numerical precision 

•  Example Exercise 
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Total Energy in Density Functional Theory 
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Kohn-Sham Equations 
Schrödinger Equation for Electron Wavefunctions 
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Self-Consistent Solution to DFT Equations 
Input Positions of Atoms for a Given 
Unit Cell and Lattice Constant 

guess charge density 

compute effective 
potential 

compute Kohn-Sham 
orbitals and density 

compare output and 
input charge densities 

Energy for Given 
Lattice Constant 

different 

same 

1.  Set up atom positions 
2.  Make initial guess of “input” charge density 

(often overlapping atomic charge densities) 
3.  Solve Kohn-Sham equations with this input 

charge density 
4.  Compute “output” charge density from 

resulting wavefunctions 
5.  If energy from input and output densities 

differ by amount greater than a chosen 
threshold, mix output and input density and 
go to step 2 

6.  Quit when energy from input and output 
densities agree to within prescribed 
tolerance (e.g., 10-5 eV) 

Note:  In your exercise, positions of atoms are dictated by symmetry.  If this is not the 
case another loop must be added to minimize energy with respect to atomic positions. 
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Implementation of DFT for a Single Crystal 

a 
a 

a 

Unit Cell Vectors 
a1 = a (-1/2, 1/2 , 0) 
a2 = a (-1/2, 0, 1/2) 
a3 = a (0, 1/2, 1/2) 

Example: Diamond Cubic Structure of Si 

Crystal Structure Defined by Unit Cell Vectors and Positions of 
Basis Atoms 

Basis Atom Positions 
0 0 0 
¼ ¼ ¼  

All atoms in the crystal can be obtained by adding integer 
multiples of unit cell vectors to basis atom positions 
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Electron Density in Crystal Lattice 

n r( ) = n r+Ruvw( )

a 
a 

a 
 Unit-Cell Vectors 
a1 = a (-1/2, 1/2 , 0) 
a2 = a (-1/2, 0, 1/2) 
a3 = a (0, 1/2, 1/2) 

Electron density is periodic with periodicity given by  Ruvw

Ruvw = ua1 + va2 +wa3Translation Vectors: 
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Electronic Bandstructure 
Example for Si 

http://de.wikipedia.org/wiki/Datei:Band_structure_Si_schematic.svg 

http://en.wikipedia.org/wiki/Brillouin_zone 

Electronic wavefunctions in a crystal can be indexed by  
point in reciprocal space (k) and a band index (β) 

Brillouin Zone Bandstructure 
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Why? 
Wavefunctions in a Crystal Obey Bloch’s Theorem 

φk
β r( ) = exp ik ⋅ r( ) ukβ r( )

For a given band β

Where          is periodic in real space: uk
β r( ) = ukβ r+Ruvw( )uk

β r( )

Ruvw = ua1 + va2 +wa3Translation Vectors: 
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Representation of Electron Density 

φk
β r( ) = exp ik ⋅ r( ) ukβ r( )

n(r) = −e φk
β r( )
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2
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In practice the integral over the Brillouin zone is replaced 
with a sum over a finite number of k-points (Nkpt) 

One parameter that needs to be checked for numerical 
convergence is number of k-points 
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Representation of Wavefunctions 
Fourier-Expansion as Series of Plane Waves 

uk
β r( ) = uk

β Glmn( )exp iGlmn ⋅ r( )
lmn
∑

φk
β r( ) = exp ik ⋅ r( ) ukβ r( )For a given band:  

Recall that           is periodic in real space: uk
β r( ) = ukβ r+Ruvw( )uk

β r( )

          can be written as a Fourier Series: uk
β r( )

Glmn = la1
* +ma2

* + na3
*

where the     are primitive reciprocal lattice vectors ai
*

a1
* ⋅a1 = 2π a1

* ⋅a2 = 0 a1
* ⋅a3 = 0

a2
* ⋅a1 = 0 a2

* ⋅a2 = 2π a2
* ⋅a3 = 0

a3
* ⋅a1 = 0 a3

* ⋅a2 = 0 a3
* ⋅a3 = 2π
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Recall Properties of Fourier Series 

http://mathworld.wolfram.com/FourierSeriesTriangleWave.html 

Black line = (exact) triangular wave 

Colored lines = Fourier series 
truncated at different orders 

General Form of Fourier Series: 

For Triangular Wave: 

Typically we expect the accuracy of a truncated Fourier series to 
improve as we increase the number of terms 
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Representation of Wavefunctions 
Plane-Wave Basis Set 

φk
β r( ) = exp ik ⋅ r( ) ukβ r( )

Another parameter that needs to be checked for convergence is 
the “plane-wave cutoff energy” Ecut 

In practice the Fourier series is truncated to include all G for which: 
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Use Fourier Expansion 
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Examples of Convergence Checks 
Effect of Ecut Effect of Number of k Points 

http://www.fhi-berlin.mpg.de/th/Meetings/FHImd2001/pehlke1.pdf 
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Outline 

•  Formalism 
–  Hydrogen Atom 
–  Density Functional Theory 

•  Exchange-Correlation Potentials 
•  Pseudopotentials and Related Approaches 
•  Some Commercial and Open Source Codes 

•  Practical Issues 
–  Implementation 

•  Periodic boundary conditions 
•  k-Points 
•  Plane-wave basis sets 

–  Parameters controlling numerical precision 

•  Example Exercise 
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Your Exercise:  Part 1 

•  Calculate equation of state of diamond cubic Si using Quantum 
Espresso on Nanohub (http://nanohub.org/) 

•  You will compare accuracy of LDA and GGA 
•  You will check numerical convergence with respect to number 

of k-points and plane-wave cutoff 
•  You will make use of the following unit cell for diamond-cubic 

structure 

a 
a 

a 

   Lattice Vectors 
a1 = a (-1/2, 1/2 , 0) 
a2 = a (-1/2, 0, 1/2) 
a3 = a (0, 1/2, 1/2) 

Basis Atom Positions 
0 0 0 
¼ ¼ ¼  
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Equation of State 
A Probe of Interatomic Interactions 

a 
a 

a 

Energy 
per atom 

Volume per atom (=a3/8 for Si) 

Schematic Energy vs. 
Volume Relation 

Diamond Cubic 
Structure of Si 

http://www.e6cvd.com/cvd/page.jsp?
pageid=361 
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Equation of State 
What Properties Can we Learn from It? 

Pressure versus Volume Relation 
 
 
 
 
 

Equilibrium Volume (or Lattice Constant) 
 
 
 
 

Bulk Modulus 

P = − ∂E
∂V

Given E(V) one can compute P(V) by taking derivative  

B = −V ∂P
∂V

=V ∂2E
∂V 2

Volume corresponding to zero pressure = Volume where slope of E(V) is zero 
≈ Volume measured experimentally at P = 1 atm 

B related to curvature of E(V) Function 

Recall 1st Law of Thermo:  dE = T dS - P dV and consider T = 0 K 
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Your Exercise:  Part 2 
Non-hydrostatic Stress and Strain 

Stress-Strain Relations in Linear Elasticity 

σ ij = Cijklεkl
k,l
∑

Consider Single Strain ε33=ε
σ33 = C11ε
σ22 = C12ε

Stress-Strain Relations in Linear Elasticity 

Stress Strain 

Cijkl Single-Crystal Elastic Constants 

Voigt Notation (for Cubic Crystal) 
C3333=C2222=C1111=C11 

 

C2233=C1133=C1122=C2211=C3311=C3322=C12 


