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Use of DFT in Materials Research

Table I. Tools Cited by Employers, Categorized and Ranked by the (Normalized) Frequency
of Cites, along with Corresponding Results from the Computational Faculty Survey

Category Example Employer Faculty+
Mechanics (mostly FEA) DEFORM, ABAQUS 80% 14%
Thermodynamics (CALPHAD) ThermoCalc, Pandat 53% 7%
Density Functional Theory VASP, ABNIT 47% 21%
Programming Language/Integration Matlab, Fortran, iSight 40% 43%
Casting ProCAST, MAGMAsoft 40% —
Molecular Dynamics/ Monte Carlo LAMMPS 27% 14%
Fluid Flow/ Heat Transfer COMSOL, Fluent 20% 7%
Diffusion/ Microstructural Evolution DICTRA, PrecipiCalc, JMatPro 20% —
Statistics Informatics 13% 7%
Materials Modeling Suite Materials Studio 13% —
General Visualization Mathematica, Tecplot 7% 29%
General Data Processing Spreadsheet 7% 21%
Special Purpose K-Flow, WARP 3D 7% —
Materials Selection CES Materials Selector — 36%
Crystallography CaRlne — 7%

*Some of the responses did not provide specific software/categories, and therefore we expect some degree of
undercounting in this data.

K. Thornton, S. Nola, R. E. Garcia, MA and G. B. Olson, “Computational Materials Science and
Engineering Education: A Survey of Trends and Needs,” JOM (2009)
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The Role of Electronic Structure Methods in IGME

« A wide variety of relevant properties can be calculated from
knowledge of atomic numbers alone

— Elastic constants

— Finite-temperature thermodynamic and transport properties
— Energies of point, line and planar defects

« For many classes of systems accuracy is quite high

— Can be used to obtain “missing” properties in materials design when
experimental data is lacking, hard to obtain, or “controversial”

— Can be used to discover new stable compounds with target properties

« The starting point for “hierarchical multiscale” modeling

— Enables development of interatomic potentials for larger-scale classical
modeling
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Materials Data for Discovery & Design
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A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson,
Applied Physics Letters Materials, 2013, 1(1), 011002.
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Materials Data for Discovery & Design
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Materials Data for Discovery & Design

MATERIAL ID: DOI:
Si0, mp-7000 10.17188/1272685

Electronic Structure Phonon Dispersion X-Ray Diffraction X-Ray Absorption Substrates Elasticity Piezoelectricity Similar Structures Calculation Summary

Provenance/Citation

Material Details Lattice Parameters
HM:P le
a=5.02
b=5.0224 Final Magnetic Moment computed  ICSD computed  ICSD
c=5.5114 0.000
a=90.000° f UB
O o0 000 A 4914 A 90.000
120.000° 5.022 90.000° . .000°
" Magnetic Ordering = = a a
VPGEnE b) 5.022A ) 90.000° b) 4914A ) 90.000°
c) 5511A y ) 120.000° c) 5.407 A y ) 120.000°
Formation Energy / Atom 3 3
39746V Volume | 120.336 A Volume| 113.081 A
Energy Above Hull / Atom Final Structure
0.011 eV Fractional Coordinates
Density 0
2.49 g/cm?
a b c

Decomposes To
0.1588 0.7439 0.4612

SiO,

0.2561 0.4149 0.7945

Band Gap
0.4149 0.2561 0.2055

5.719 eV
Structure Type: Conventional Standard = Primitive = Refined F 0.5851 0.8412 0.1279

Space Group

Shaceluling o viecta 07433  0.1588 05388

Hermann Mauguin
Zoom infout  Shift + Drag cursor ®
Rotate along the center axis  Option + Drag cursor P3:21 [1 52] .

DFT Lecture, The 7th Summer School for Integrated Computational Materials Education



Materials Data for Discovery & Design
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 Formalism
— Hydrogen Atom

— Density Functional Theory
« Exchange-Correlation Potentials
* Pseudopotentials and Related Approaches
« Some Commercial and Open Source Codes

 Practical Issues

— Implementation
» Periodic boundary conditions
» k-Points
» Plane-wave basis sets
— Parameters controlling numerical precision

 Example Exercise
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Introduction
The Hydrogen Atom

r=r-r, R=

h2
5

Proton with mass M,, coordinate R,
Electron with mass m,, coordinate r,

— w V2_h_2
oM, ' 2m,

£

MR, + m,r,

M, + m,

_h_2V2 n
oM % 2m

— V-

_ M m,

- —)‘P(Rl,rz) = EW(R,,r,)

, M=M +m,

M, + m,

)‘I’(R r)= EW(R,r)

W(R,r) =1, (R)y,(r)

s

h2
2m

—V; ——)w (r)=E3y,.(r)
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Hydrogen Atom

Switch to Spherical Coordinates

2 2 2
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l/)(l",@,gb) = Rnl(r)Ylm (8’¢)

(1 d{,d) ll+]) e ~
— — |- —— IR =F a
2171(1’2 dr(r dr) r’ r u()= B Ry () |
\
4
me” 1 13.6 \
En = 2h2 _2 =T n2 eV " \\
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Wavefunctions

_3
I
—
\_/I\)
- W

(p), 2(d), .

ro

4 V

) . o . Probability densities through the xz-plane for the
http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/HydrogenAtom.htm electron at different quantum numbers (/, across
top; n, down side; m = 0)

http://en.wikipedia.org/wiki/Hydrogen_atom
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The Many-Electron Problem

electrons

 (Collection of
— N ions
— n electrons

* Analytical solution like
that for hydrogen atom
not available

lons
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« Mass of nuclei exceeds that of the electrons by a factor of
1000 or more
— we can neglect the kinetic energy of the nuclei
— treat the ion-ion interaction classically
— significantly simplifies the Hamiltonian for the electrons

« Consider Hamiltonian for n electrons in potential of N
nuclei with atomic numbers Z,

n

_ 2
H = Vrl EE‘R _r‘

2m i=1 j=1

—

external potential

l'—l"

=Veu (1))
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Density Functional Theory
Hohenberg and Kohn (1964), Kohn and Sham (1965)

* For each external potential there is a unique ground-
state electron density

« Energy can be obtained by minimizing of a density
functional with respect to density of electrons n(r)

Egroundstate= mi n{Etot[n (r)]}

Etot[n(r)] =T[n(r)] 1nt +fdl‘ ext ) + Lion_ion
/7 T ‘\

Kinetic Energy  Electron-Electron Electron-lon
Interactions Interactions
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n

n(r) = —ez

i=1

6,

E[{¢}]= —%f [ V2d'r+ [V, (Dn(r)d’r

+ % f n(r)n(r')d3rd3r'+ E_[n(r)]

r=r]

Many-Body Electron-Electron Interactions Lumped into E, [n(r)]

“Exchange-Correlation Energy”
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_ X ' ]
_—VZ2 + Vnuclei(r) + f n(r ) d3l’"+ ch (l") ¢i(r) = 8i¢i(r)
2m r=r] .

v, () = Ll 2]
on(r)
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Local Density Approximation
(e.g., J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981))

E. [n(M]= [ (n(r)n(r)d’r

hom

g (n(r)) = Exchange — Correlation Energy of Homogeneous

XC

Electron Gas of Density n(r)
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J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996)

En(n)]= [ & (n(r)n(r)F, (r,,8,5)d’r

2.0 [re—
’53
o
n=3/4xr’ =k, /3x° -
C=(n-n)ln =
s=IVnl/2k.n

F..(r.¢,s)
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A Note on Accuracy and Ongoing Research

LDA often leads to “overbinding”

— Lattice constants can be 1-3 % too smalll, elastic constants 10-15 %
too stiff, cohesive energies 5-20 % too large

BUT, errors are largely systematic
— Energy differences tend to be more accurate

GGA corrects for overbinding
— Sometimes “overcorrects”

“‘Beyond DFT” Approaches

— For “highly correlated” systems LDA & GGA perform worse and
corrections required (DFT+U, Hybrid Hartree-Fock/DFT, Meta-GGA,
DMFT, ...)

— Non-bonded interactions, e.g., van der Waals interactions in graphite,
require additional terms or functionals (e.g., vdW-DF)

DFT Lecture, The 7th Summer School for Integrated Computational Materials Education



Pseudopotentials

Potential due to ions is
singular at ion core

Eigenfunctions oscillate

rapidly near singularity

Eigenfunction in bonding v(r)
region is smooth
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For plane-wave basis sets, rapid oscillations 0)
require large number of basis functions

— expensive

— unnecessary

 these oscillations don't alter bonding
properties V(r)

Replace potential with nonsingular potential

— preserve bonding tails of eigenfunction

— preserve distribution of charge between core
and tail regions Ppseudo
— reduces number of plane waves required for/\/V\
accurate expansion of wavefunction
Transferable . p
— developed from properties of isolated atoms ‘*-'\'/pseudo(r)
— applied in other situations /
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summary of Approaches

Pseudopotentials

— Core electrons removed from problem and enter only in their
effect of the pseudopotential felt by the valence electrons

— Kohn-Sham equations solved for valence electrons only

“Augment” Plane Waves with atomic-like orbitals

— An efficient basis set that allows all electrons to be treated in the
calculations

— Basis for “all-electron” codes
Projector-Augmented-\Wave method

— Combines features of both methods

— Generally accepted as the basis for the most accurate approach
for calculations requiring consideration of valence electrons only
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sSome of the Widely Used Codes

VASP (http://cms.mpi.univie.ac.at/vasp/)
— Commercial, Plane-Wave Basis, Pseudopotentials and PAW

PWSCF (http://www.quantum-espresso.org/)

— Free (and available to run on nanohub), Plane-Wave Basis,
Pseudopotentials and PAW

CASTEP (http://ccpforge.cse.rl.ac.uk/gf/project/castep/)

— Free in UK, licensed by Accelrys elsewhere, Plane-Wave Basis,
Pseudopotentials

ABINIT (http://www.abinit.org/)

— Free (and available to run on nanohub), plane-wave basis,
pseudopotentials and PAW

WIENZ2K (http://www.wien2k.at/)
— Commercial (modest license fee), all-electron augmented wave method
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 Practical Issues

— Implementation
» Periodic boundary conditions
» k-Points
» Plane-wave basis sets
— Parameters controlling numerical precision
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Total Energy in Density Functional Theory

E[{¢.}] = ——Ee [o;Vipdr+ [V, (n@)dr

2m

e i=1

+ %f n(r)n(r')d3rd3r'+Exc[n(r)]

r=r|
n

Electron Density n(r)= —62
i=1

o,(r)[

Electron Wavefunctions ¢i(7’ )
Potential Electrons Feel from Nuclei Vex;(r )

Exchange-Correlation Energy E xc[”(” )]

/l

Form depends on whether you use LDA or GGA
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Schrédinger Equation for Electron Wavefunctions

2 | -
B Viz Ve (1) + f ) d’r'+ V() |9,(r)=¢€¢,(r)
2me ‘r —_ ]""
Exchange-Correlation Potential ch (r) = oF xc [n(r)]
on(r)

n

Electron Density n(r) = —62
i=1

6,(r)[

Note: ¢, depends on n(r) which depends on ¢, 2
Solution of Kohn-Sham equations must be done iteratively
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Self-Gonsistent Solution to DFT Equations

Input Positions of Atoms for a Given
Unit Cell and Lattice Constant

v

guess charge density

v

compute effective
potential

v

compute Kohn-Sham
orbitals and density

v

different

compare output and
input charge densities

Energy for Given
Lattice Constant

same

Set up atom positions

Make initial guess of “input” charge density
(often overlapping atomic charge densities)

Solve Kohn-Sham equations with this input
charge density

Compute “output” charge density from
resulting wavefunctions

If energy from input and output densities
differ by amount greater than a chosen
threshold, mix output and input density and
go to step 2

Quit when energy from input and output
densities agree to within prescribed
tolerance (e.g., 10-° eV)

Note: In your exercise, positions of atoms are dictated by symmetry. If this is not the
case another loop must be added to minimize energy with respect to atomic positions.
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Implementation of DFT for a Single CGrystal

Crystal Structure Defined by Unit Cell Vectors and Positions of
Basis Atoms

Example: Diamond Cubic Structure of Si

Unit Cell Vectors
a, =a(-1/2,1/2,0)
a, =a(-1/2,0, 1/2)
a, =a (0, 1/2, 1/2)

Basis Atom Positions
000
YaVaVa

All atoms in the crystal can be obtained by adding integer
multiples of unit cell vectors to basis atom positions
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Electron Density in Grystal Lattice

Unit-Cell Vectors
a, =a(-1/2,1/2 , 0)
a, =a(-1/2, 0, 1/2)
a, = a (0, 1/2, 1/2)

Electron density is periodic with periodicity given by R
n(r)=n(r+R,,)

Translation Vectors: R, =ua, +va, + wa,
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Electronic Bandstructure

Example for Si

Brillouin Zone Bandstructure

http://en.wikipedia.org/wiki/Brillouin_zone SI k

http://de.wikipedia.org/wiki/Datei:Band_structure_Si_schematic.svg

Electronic wavefunctions in a crystal can be indexed by
point in reciprocal space (k) and a band index (/)
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Why?

Wavefunctions in a Crystal Obey Bloch’s Theorem

For a given band

¢F (r) = exp(ik : r) u’ (r)
Where u; (r) is periodic in real space: uf (r)=u, (r+R,,)

Translation Vectors: R = =ua, +va, +wa,

DFT Lecture, The 7th Summer School for Integrated Computational Materials Education



Representation of Electron Density

B _ I - p
dr (r)=exp(ik-r)u (r)
51 AP s s d’k
o (v)] f el = er) =
/, BZ
Integral over k-points in first Brillouin zone
f(e-e¢) is Fermi-Dirac distribution function with Fermi energy &

n(r) = —826‘@ (r)‘z ——> n(r)= _ez f Qy
=1 p

In practice the integral over the Brillouin zone is replaced
with a sum over a finite number of k-points (N, )

zf(gfj - gF)

1% (r)

One parameter that needs to be checked for numerical
convergence is number of k-points
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Fourier-Expansion as Series of Plane Waves

For a given band: ¢, (r)=exp(ik-r)u (r)

Recall that u (r) is periodic in real space: u (r)=uf (r+R,,,)

ut, (r) can be written as a Fourier Series:
ul/()) (r) = Euf (Glmn)exp<iGlmn . r)

Imn

G

where the a; are primitive reciprocal lattice vectors

* * *

. =la, +ma, +na,

a-a =27 a-a,=0 a -a,=0
: 0 a, 2 : 0
a,-a = a,-a,=2m1 a,-a,=
a,ra, =0 a;-a,=0 a;-a,=27
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Black line = (exact) triangular wave

Colored lines = Fourier series
truncated at different orders

http://mathworld.wolfram.com/FourierSeriesTriangleWave.html

General Form of Fourier Series; [ &)=

|| =

ap + z a, cos (nx) + Z b, sin (n x).
n=|

n=1|

nunx,

J

. ] o (~ l):n—l 12
For Triangular Wave: fx)= 3 —_—

)

sin (
n-

n=135

Typically we expect the accuracy of a truncated Fourier series to
iImprove as we increase the number of terms
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Representation of Wavefunctions

Plane-Wave Basis Set

For a given band ¢/ (r)=exp(ik-r)uf (r)

Use Fourier Expansion

v

o (r)= Euf (G)exp[i(G+k) : r]

G

In practice the Fourier series is truncated to include all G for which:
2

—(G + k)2 <E_,

2m

Another parameter that needs to be checked for convergence is
the “plane-wave cutoff energy” E_
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 Example Exercise
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Your Exercise: Part1

Calculate equation of state of diamond cubic Si using Quantum
Espresso on Nanohub (http://nanohub.org/)

You will compare accuracy of LDA and GGA

You will check numerical convergence with respect to number
of k-points and plane-wave cutoff

You will make use of the following unit cell for diamond-cubic
structure

Lattice Vectors
a,=a(-1/2,1/2,0)
a,=a(-1/2,0,1/2)
az;=a (0, 1/2,1/2)

Basis Atom Positions
000
YVaVaVa
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A Probe of Interatomic Interactions

Schematic Energy vs. Diamond Cubic

Volume Relation Structure of Si
Energy 1
per atom

http://www.e6cvd.com/cvd/page.jsp?
> pageid=361

Volume per atom (=a3/8 for Si)
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What Properties Can we Learn from It?

Pressure versus Volume Relation

_OE Given E(V) one can compute P(V) by taking derivative

FY%
\
Recall 15t Law of Thermo: dE =T dS - PdV and consider T =0 K

P =

Equilibrium Volume (or Lattice Constant)

Volume corresponding to zero pressure = Volume where slope of E(V) is zero
= VVolume measured experimentally at P = 1 atm

Bulk Modulus

2
Byl Ly O
oV oV

B related to curvature of E(V) Function
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Your Exercise: Part2

Non-hydrostatic Stress and Strain

Stress-Strain Relations in Linear Elasticity

O, = E Ci€i

/TN

Stress Strain

Cijkl —> Single-Crystal Elastic Constants

Stress-Strain Relations in Linear Elasticity

Consider Single Strain e5;=¢
033= Cpye
Opp= Cyp€
Voigt Notation (for Cubic Crystal)
C33337C2220=C1111=C1y
C22357C1135=C1122=C2211=C3311=C3320=C1y
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