Overview of the MOOSE Framework and Applications to Materials Science

Larry Aagesen, Yongfeng Zhang, Daniel Schwen, Pritam Chakraborty, Bulent Biner, Jianguo Yu, Chao Jiang, Ben Beeler, Wen Jiang, Andrea Jokisaari, Yipeng Gao, Sudipta Biswas

vww.inl.gov

Idaho National

Laboratory

Michael Tonks

Paul Millett

Xianming Bai

Karim Ahmed

Overview

- General overview of the MOOSE framework
- MOOSE tools for meso-scale modeling
- Phase-field modeling
- Examples and applications

Material Behavior

 A key objective of materials science is to understand the impact of microstructure on macroscale material behavior.

• An essential part of that is predicting the impact of microstructure evolution.

Irradiated UO₂ fuel

Corrosion in stainless steel

Micro-cracking in steel

Hydride in Zircaloy

Material Behavior is Multiphysics

Material behavior is influenced by many different physics, for example:

Mechanics

- Dislocations
- Cracking
- Stress-driven
 Diffusion

Chemistry

- Corrosion
- Oxidation
- Reactive
 transport

Electricity/Magnetism

- Electromigration
- Ferroelectricity
- Ferromagnetism

Heat Conduction

- Species transport
- Melting
- Precipitation

Material Behavior is Multiscale

Material behavior at the atomistic and microscales drives macroscale response.

Multiscale Modeling Approach

 Simulations at smaller scales inform the models at increasing length scales

Atomic scale bulk DFT + MD

- Identify important bulk mechanisms
- Determine bulk material parameters

nm

Mesoscale models

- Predict and define microstructure evolution
- Determine effect of evolution on material properties

- Engineering scale simulation
- Predictive modeling at the engineering scale

mm

Atomic scale microstructure MD

- Investigate role of idealized interfaces
- Determine interfacial properties

um

Materials Modeling Requirements

- To model material behavior at the meso- and macroscales requires that we deal with its inherent complexity.
- A tool for modeling material behavior needs to:
 - Easily handle multiple, tightly coupled physics
 - Have tools for multiscale modeling
- It would also be nice if it
 - Were simple to use and develop
 - Took advantage of high performance computing
 - Were free and open source
 - Had a team of full time staff for development and support
 - Had a strong user community

MOOSE

Multiphysics Object Oriented Simulation Environment

- MOOSE is a finite-element, multiphysics framework that simplifies the development of advanced numerical applications.
- It provides a high-level interface to sophisticated nonlinear solvers and massively parallel computational capability.

- MOOSE has been used to model thermomechanics, neutronics, geomechanics, reactive transport, microstructure modeling, computational fluid dynamics, and more every day!
- It is open source and freely available at mooseframework.org

Idaho National Laboratory

MOOSE

- Tool for develop simulation tools that solve PDEs using FEM
- Spatial discretization with finite elements, where each variable can use a different element type, i.e. different shape functions
- Easy to couple multiple PDE
- Implicit or explicit time integration is available
- Dimension agnostic, same code can be used in 1- to 3-D
- Inherently parallel, solved with one to >10000 processors
- Provides access to mesh and time step adaptivity
- Easy simulation tool development
- Can read and write various mesh formats
- Strong user community
- Newton or Jacobian free solvers.

Mesh and Time Step Adaptivity

Any model implemented with MOOSE has access to mesh and time step adaptivity

Mesh Adaptivity

- Requires no code development
- Refinement or coarsening is defined by a marker that be related to
 - An error estimator
 - Variable values
 - Stipulated by some other model
- · Error indicators include the
 - Gradient jump indicator
 - Flux jump indicator
 - Laplacian jump indicator
 - Analytical indicator

Transient Time Step Adaptivity

- The time step in transient simulations can change with time
- Various time steppers exist to define *dt*:
 - Defined by a function
 - Adapts to maintain consistent solution behavior
 - Adapts to maintain consistent solution time
- Users can write new time steppers

Mesoscale Modeling with the MOOSE framework

 All of the code required to easily create your own phase field application is in the open source MOOSE modules (MOOSE-PF).

MOOSE-PF Generic Phase Field Library

- Provides the tools necessary to develop phase field models using FEM.
- Base classes for solving Cahn Hilliard equations
 - Direct solution
 - Split solution
- Base classes for Allen-Cahn equations
- Grain growth model
- Grain remapping algorithm for improved efficiency
- Initial conditions
- Postprocessors for characterizing microstructure

daho National Laboratory

MOOSE-Tensor Mechanics

- Provides the tools necessary for modeling mechanical deformation and stress at the mesoscale.
 - · Anisotropic elasticity tensors that can change spatially
 - Linear elasticity
 - Eigen strains
 - Finite strain mechanics
 - J2 plasticity
 - Crystal plasticity

Stress YY (MPa)

438.00

290.05 142.10

-5.85

MOOSE-Heat Conduction

- Provides the tools necessary for modeling heat conduction and temperature gradients at the mesoscale.
- Steady state heat conduction
- Transient term
- Effective thermal conductivity calculation
- Spatially varying thermal conductivity

Idaho National Laboratory

MARMOT

 Models the coevolution of microstructure and properties in reactor materials

MARMOT is in use by researchers at laboratories and universities:

The Phase Field Method

- Microstructure described by a set of continuous variables...
 - Non-Conserved Order Parameters

• The variables evolve to minimize a functional defining the free energy

Phase Field Has Been Used in Many Areas

• The phase field method is our method of choice because it can be:

- Easily coupled to other physics such as mechanics or heat conduction
- Quantitative and can represent real materials

Phase Field Documentation

- Documentation for the phase field module is found on the mooseframework.org wiki:
 - http://mooseframework.org/wiki/PhysicsModules/PhaseField/

Examples

- Example input files for MOOSE-PF can be found in the examples directory: moose/modules/phase_field/examples/
 - These are midsized 2D problems that run well on four processors

- The tests can serve as additional examples
 - There are many tests for the various components of MOOSE
 - Each test runs in less then 2 seconds on one processor

The Phase Field Equations

 Non-conserved variables (phases, grains, etc.) are evolved using an Allen-Cahn (aka Ginzburg-Landau) type equation:

$$\frac{\partial \eta_j}{\partial t} = -L \frac{\delta F}{\delta \eta_j}$$

Conserved variables are evolved using a Cahn-Hilliard type equation:

$$\frac{\partial c_i}{\partial t} = \nabla \cdot \left(M(c_i) \nabla \frac{\delta F}{\delta c_i} \right)$$

 Both equations are functions of variational derivatives of a functional defining the free energy of the system in terms of the variables

$$F = \int_{V} \left(\frac{f_{loc}(c_i, \eta_j, ..., T) + E_d + \sum_{i} \frac{\kappa_i}{2} (\nabla c_i)^2 + \sum_{j} \frac{\kappa_j}{2} (\nabla \eta_j)^2}{\text{Local energy}} \right) dV$$

Local energy Gradient energy

Variational Derivative

The functional derivative (or variational derivative) relates a change in a functional to a change in a function that the functional depends on.

Wikipedia, "Functional derivative"

$$F = \int f(r, c, \nabla c) dV$$

$$\frac{\delta F}{\delta c} = \left(\frac{\partial f}{\partial c} + \nabla \cdot \frac{\partial f}{\partial \nabla c}\right)$$

F total free energy
f free energy **density**

- Derivative with respect to the gradient!
- Gradient energy term in phase field (very few functional forms)
- Bulk free energy (contains the thermodynamics of the system)
 Simple partial derivative

Phase Field Implementation in MOOSE

- The kernels required to solve the phase field equations have been implemented in the phase field module
- In general, a developer will not need to change the kernels but simply use the kernels that have already been implemented
- New models are implemented by defining the free energy and mobility with their derivatives in *material* objects.

Derivative Function Materials

- Each MOOSE Material class can provide multiple Material Properties
- A Derivative Function Material is a MOOSE Material class that provides a well defined set of Material Properties
 - A function value, stored in the material property F (the f_name of the Material)
 - All derivatives of F up to a given order with respect to the non-linear variables F depends on
- The derivatives are regular Material Properties with an enforced naming convention
 - Example F, dF/dc, d^2F/dc^2, dF/deta, d^2F/dcdeta ...
 - You don't need to know the property names besides F, unless you want to look at them in the output!
- Recap: Each Derivative Function Material provides one Function together with its derivatives!
- That function can be a *Free Energy Density*, a *Mobility*, or whatever you may need.

Solving the Allen-Cahn Equation

 After taking the variational derivative, the strong form of the Allen-Cahn residual equation is

$$\frac{\partial \eta_j}{\partial t} = -L \left(\frac{\partial F}{\partial \eta_j} + \frac{\partial E_d}{\partial \eta_j} - \kappa_j \nabla^2 \eta_j \right)$$

 Each piece of the weak form of the residual equation has been implemented in a kernel:

$$\begin{split} \boldsymbol{\mathcal{R}}_{\eta_{j}} &= \left(\frac{\partial \eta_{j}}{\partial t}, \psi_{m}\right) + \left(L_{j}\kappa_{j}\nabla\eta_{j}, \nabla\psi_{m}\right) + L_{j}\left(\frac{\partial f_{loc}}{\partial\eta_{j}} + \frac{\partial E_{d}}{\partial\eta_{j}}, \psi_{m}\right) \\ & \text{TimeDerivative ACInterface} & \text{AllenCahn} \end{split}$$

- Parameters must be defined in a *material* object
- The free energy density and its derivatives are defined in a Derivative Function Material

Solving the Cahn-Hilliard Equation

- Due to the fourth-order derivative, solving the Cahn-Hilliard equation can be hard. In MOOSE there are two available approaches
 - Residual: $\mathcal{R}_{c_i} = \frac{\partial c_i}{\partial t} \nabla \cdot M(c_i) \left(\nabla \frac{\partial f_{loc}}{\partial c_i} + \nabla \frac{\partial E_d}{\partial c_i} \right) + \nabla \cdot M(c_i) \nabla \left(\kappa_i \nabla^2 c_i \right)$

- We can put this in weak form:

$$\left(\frac{\partial c_i}{\partial t}, \psi_m\right) = -(\kappa_i \nabla^2 c_i) \nabla \cdot (M_i \nabla \psi_m)) - \left(M_i \nabla \left(\frac{\partial f_{loc}}{\partial c_i} + \frac{\partial E_d}{\partial c_i}\right), \nabla \psi_m\right)$$

- But, solving this residual requires higher order elements
- Another option is to split the equation into two:

$$\begin{array}{ll} & \textbf{Strong Form} & \textbf{Weak Form} \\ \hline \frac{\partial c_i}{\partial t} = \nabla \cdot (M_i \nabla \mu_i) & \left(\frac{\partial c_i}{\partial t}, \psi_m\right) = - (M_i \nabla \mu_i, \nabla \psi_m) \\ \mu_i = & \frac{\partial f_{loc}}{\partial c_i} - \kappa_i \nabla^2 c_i + \frac{\partial E_d}{\partial c_i} & (\mu_i, \psi_m) = \left(\frac{\partial f_{loc}}{\partial c_i}, \psi_m\right) + (\kappa \nabla c_i \nabla \psi_m) + \left(\frac{\partial E_d}{\partial c_i}, \psi_m\right) \end{array}$$

- The split form can be solved with first-order elements.

The Direct Solution of the Cahn-Hilliard Equation

 Each piece of the weak form of the Cahn-Hilliard residual equation has been implemented in a kernel

$$\begin{split} \boldsymbol{\mathcal{R}}_{c_{i}} &= \left(\frac{\partial c_{i}}{\partial t}, \psi_{m}\right) + \left(\kappa_{i} \nabla^{2} c_{i}, \nabla \cdot \left(M_{i} \nabla \psi_{m}\right)\right) + \left(M_{i} \nabla \left(\frac{\partial f_{loc}}{\partial c_{i}} + \frac{\partial E_{d}}{\partial c_{i}}\right), \nabla \psi_{m}\right) \\ & \\ \textbf{TimeDerivative} \qquad \textbf{CHInterface} \qquad \textbf{CahnHilliard} \end{split}$$

- Parameters must be defined in a material object
- The free energy density and its derivatives are defined in an energy material object (e.g. DerivativeParsedMaterial)
- Mobilities can also depend on non-linear variables M(c) and can be supplied through Derivative Function Materials
- Due to the second order derivative, third order Hermite elements must be used to discretize the variables

The Split Solution of the Cahn-Hilliard Equation

 The weak form of the split Cahn-Hilliard residual equation has also been implemented in kernels:

$$\mathcal{R}_{\mu_i} = \left(\frac{\partial c_i}{\partial t}, \psi_m\right) + \left(M_i \nabla \mu_i, \nabla \psi_m\right)$$

CoupledTimeDerivative SplitCHWRes

$$\begin{split} \boldsymbol{\mathcal{R}}_{c_i} &= (\kappa_i \nabla c_i, \nabla \psi_m) + \left(\left(\frac{\partial f_{loc}}{\partial c_i} + \frac{\partial E_d}{\partial c_i} - \mu_i \right), \psi_m \right) \\ & \quad \text{SplitCHParsed} \end{split}$$

- Parameters must be defined in a material object
- The free energy density and its derivatives are defined in an energy material object (as with the direct solve, making it easy to switch between the two)
- Residuals are reversed to improve convergence (CoupledTimeDerivative)

Cahn-Hilliard Solution

- We have done a quantitative comparison between the direct and the split solutions of the Cahn-Hilliard equation.
 - The split with 1st order elements is the most efficient.
 - The direct solution has the least error.

 However, practically speaking the split is often the best choice, since our simulations can be computationally expensive.

Simple Phase Field Model Development

- As stated above, the microstructure evolves to minimize the free energy
- Thus, the free energy functional is the major piece of the model

f d d d

 Phase field model development is modular, with all development focused around the free energy

Free energy:
$$F = \int_{V} \left(f_{loc}(c_{i},\eta_{j},...,T) + E_{d} + \sum_{i} \frac{\kappa_{i}}{2} (\nabla c_{i})^{2} + \sum_{j} \frac{\kappa_{j}}{2} (\nabla \eta_{j})^{2} \right) dV$$
Differential equations:
$$\left(M_{i} \nabla \left(\frac{\partial f_{loc}}{\partial c_{i}} + \frac{\partial E_{d}}{\partial c_{i}} \right), \nabla \psi_{m} \right) (\kappa_{i} \nabla c_{i}, \nabla \psi_{m}) + \left(\left(\frac{\partial f_{loc}}{\partial c_{i}} + \frac{\partial E_{d}}{\partial c_{i}} \right), \psi_{m} \right)$$
CahnHilliard
Free Energy Density Material
bulk = 1/4*(1 + c)^{2*}(1 - c)^{2}
fbulk/dc = c^{3} - c
$$\sum_{j=1}^{2} \nabla f(c,\eta) = \nabla c \frac{\partial f}{\partial c} + \nabla \eta \frac{\partial f}{\partial \eta}$$

$$\nabla f(c,\eta) = \nabla c \frac{\partial f}{\partial c} + \nabla \eta \frac{\partial f}{\partial \eta}$$

Phase field models that are not based on a free energy can be implemented using normal MOOSE syntax

Derivative Function Materials

- The free energy and its derivatives can be defined in materials classes in four different ways:
 - The derivatives can be defined directly by the user, by inheriting from DerivativeFunctionMaterialBase
 - The derivatives can be calculated automatically, with the free energy defined in the input file using DerivativeParsedMaterial
 - The derivatives can be calculated automatically, with the free energy hard coded in a material object (ExpressionBuilder)
 - CALPHAD free energies (only for simple models now)
- A derivative material has an f_name (the function name)
- Property names of the derivatives are constructed automatically (using the value of f_name_according to fixed rules set in the DerivativeMaterialPropertyNameInterface class)
- Add Derivative Function Materials using the DerivativeSumMaterial (sums function values and derivatives)

Automatic Free Energy Differentiation

• To simplify development even more, you can only enter the free energy functional and all derivatives are automatically evaluated analytically

+ Cahn-Hilliard

+ Allen-Cahn

Automatic Differentiation

Symbolic differentiation of free energy expressions

- Based on FunctionParser http://warp.povusers.org/FunctionParser/ to allow runtime specification of mathematical expressions
- Mathematical expressions
 Tree data structures
- Recursively apply differentiation rules starting at the root of the tree
- Eliminate source of human error
- Conserve developer time

Performance considerations

- Aren't interpreted functions slower than natively compiled functions?
- Just In Time (JIT) compilation for FParser functions
- Parsed functions (automatic differentiation) now as fast as hand coded functions
- Makes the rapid Phase Field model development more attractive
- ~80ms compile time per function. Results cached.

Examples and Applications

www.inl.gov

MARMOT Example: Void Migration

 Multiscale investigation of void migration in a temperature gradient (Soret effect):

() MOOSE

Atomistic

 MD studies identify the diffusion mechanisms active in the migration of nanovoids

From Desai (2009)

Mesoscale

The migration of larger voids is modeled with MARMOT with surface and lattice diffusion

Pore Migration in a Temperature Gradient

Zhang et al., Computational Materials Science, 56 (2012) 161-5

Particle and Pore Pinning

- Defects such as pores or precipitates on GBs impede the GB migration by applying an opposing force.
- To account for the interaction of GBs with a particle defined by the variable c, we add a term to the free energy

$$f(c,\eta_i) = \sum_i \left(\frac{\eta_i^4}{4} - \frac{\eta_i^2}{2}\right) + \left(\frac{c^4}{4} - \frac{c^2}{2}\right) + a_{GB} \sum_i \sum_{j>i} \eta_i^2 \eta_j^2 + a_s \sum_i c^2 \eta_i^2$$

- The term is implemented in the kernel ACGBPoly
- It is activated using the simplified grain growth syntax by adding a coupled variable c

Particle and Pore Pinning

- We verified this model by simulating an identical system using MD simulation and the phase field model
 - 10 He bubbles (r = 6 nm) in Mo bicrystal (R = 20 nm) at 2700 K.

Coupling to Larger Length-Scales

MARMOT can be used in both hierarchical and concurrent coupling Hierarchical coupling

- Lower length-scale models are run separately to construct materials models.
- Macroscale simulations are efficient.

- Can locate important coupled behaviors
- More computationally expensive

Thank you!

- For more information, please see http://mooseframework.org
- Github repository: https://github.com/idaholab/moose
- 2-3 day training workshops at INL and other locations (keep an eye on the website for dates and locations)
- Mailing list: to subscribe, send an email to moose-users+subscribe@googlegroups.com or see http://mooseframework.org/getting-started/