
w
w

w
.in

l.g
ov

Overview of the MOOSE Framework
and Applications to Materials
Science

Larry Aagesen, Yongfeng Zhang, Daniel
Schwen, Pritam Chakraborty, Bulent Biner,
Jianguo Yu, Chao Jiang, Ben Beeler, Wen
Jiang, Andrea Jokisaari, Yipeng Gao, Sudipta
Biswas

Paul Millett

Michael Tonks

Karim Ahmed

Xianming Bai

Overview
•  General overview of the MOOSE framework
•  MOOSE tools for meso-scale modeling
•  Phase-field modeling
•  Examples and applications

Material Behavior
•  A key objective of materials science is to understand the impact of

microstructure on macroscale material behavior.

•  An essential part of that is predicting the impact of microstructure
evolution.

Annealed Stainless Steel Cast Bronze Sintered UO2 Co-Al-W Superalloy Friction stir welded stainless steel

Corrosion in stainless steel Micro-cracking in steel Irradiated UO2 fuel Hydride in Zircaloy

Material Behavior is Multiphysics
•  Material behavior is influenced by many different physics, for example:

Mechanics
•  Dislocations
•  Cracking
•  Stress-driven
 Diffusion

Chemistry
•  Corrosion
•  Oxidation
•  Reactive
 transport

Electricity/Magnetism
•  Electromigration
•  Ferroelectricity
•  Ferromagnetism

Heat Conduction
•  Species transport
•  Melting
•  Precipitation

Material Behavior is Multiscale
•  Material behavior at the atomistic and microscales drives macroscale

response.

Multiscale Modeling Approach
•  Simulations at smaller scales inform the models at

increasing length scales

•  Identify important
bulk mechanisms

•  Determine bulk
material
parameters

Atomic scale bulk
DFT + MD

•  Investigate role of idealized
interfaces

•  Determine interfacial properties

Atomic scale microstructure MD

Mesoscale models

•  Predict and define
microstructure
evolution

•  Determine effect of
evolution on material
properties

Engineering
scale
simulation

•  Predictive
modeling at the
engineering
scale

6
nm µm mm

Lengthscale

Materials Modeling Requirements
•  To model material behavior at the meso- and

macroscales requires that we deal with its
inherent complexity.

•  A tool for modeling material behavior needs to:
–  Easily handle multiple, tightly coupled physics
–  Have tools for multiscale modeling

•  It would also be nice if it
–  Were simple to use and develop
–  Took advantage of high performance computing
–  Were free and open source
–  Had a team of full time staff for development and

support
–  Had a strong user community

Multiphysics Object Oriented Simulation Environment

•  MOOSE is a finite-element, multiphysics framework that simplifies the
development of advanced numerical applications.

•  It provides a high-level interface to sophisticated nonlinear solvers and
massively parallel computational capability.

•  MOOSE has been used to model thermomechanics, neutronics,
geomechanics, reactive transport, microstructure modeling,
computational fluid dynamics, and more every day!

•  It is open source and freely available at mooseframework.org

8

•  Tool for develop simulation tools that solve PDEs using FEM

•  Spatial discretization with finite elements, where each variable can use a
different element type, i.e. different shape functions

•  Easy to couple multiple PDE
•  Implicit or explicit time integration is available
•  Dimension agnostic, same code can be used in 1- to 3-D
•  Inherently parallel, solved with one to >10000 processors
•  Provides access to mesh and time step adaptivity
•  Easy simulation tool development
•  Can read and write various mesh formats
•  Strong user community
•  Newton or Jacobian free solvers.

9

Mesh and Time Step Adaptivity
•  Any model implemented with MOOSE has access to mesh and time

step adaptivity

10

Mesh Adaptivity
•  Requires no code development
•  Refinement or coarsening is defined by

a marker that be related to
-  An error estimator
-  Variable values
-  Stipulated by some other model

•  Error indicators include the
-  Gradient jump indicator
-  Flux jump indicator
-  Laplacian jump indicator
-  Analytical indicator

Transient Time Step Adaptivity
•  The time step in transient simulations

can change with time
•  Various time steppers exist to define dt:

-  Defined by a function
-  Adapts to maintain consistent solution

behavior
-  Adapts to maintain consistent solution

time
•  Users can write new time steppers

10−3 10−1 101 103

10−3

10−1

101

Time

dt

Mesoscale Modeling with the MOOSE framework
•  All of the code required to easily create your own phase field

application is in the open source MOOSE modules (MOOSE-PF).

Framework

Modules

All of the code that forms
the basis of the MOOSE
framework

Tensor Mechanics
•  Linear elasticity
•  Eigenstrains
•  J2 Plasticity
•  Crystal plasticity

Phase Field
•  Cahn-Hilliard and

Allen-Cahn equations
•  Free energy based

development

Heat Conduction
•  Steady state
•  Transient
•  Locally varying

thermal conductivity

 Generic Phase Field Library

•  Provides the tools necessary to develop phase field models using FEM.

•  Base classes for solving Cahn Hilliard equations
•  Direct solution
•  Split solution

•  Base classes for Allen-Cahn equations
•  Grain growth model
•  Grain remapping algorithm for improved efficiency
•  Initial conditions
•  Postprocessors for characterizing microstructure

•  Provides the tools necessary for modeling mechanical deformation and
stress at the mesoscale.

•  Anisotropic elasticity tensors that can change spatially
•  Linear elasticity
•  Eigen strains
•  Finite strain mechanics

•  J2 plasticity
•  Crystal plasticity

•  Provides the tools necessary for modeling heat conduction and
temperature gradients at the mesoscale.

•  Steady state heat conduction
•  Transient term
•  Effective thermal conductivity calculation
•  Spatially varying thermal conductivity

•  Models the coevolution of microstructure and properties in reactor
materials

•  MARMOT is in use by researchers at laboratories and universities:

Applicable to
all materials

Specifically
for reactor
materials

MARMOT

No physics

•  Microstructure described by a set of continuous variables…
–  Non-Conserved Order Parameters

–  Conserved Concentrations

•  The variables evolve to minimize a functional defining the free energy

0

1

η5

η2

λ

η7

η5

η1

η8

η3
η2

η4

Atomic Scale Meso Scale

void

0

1

Cv

void

The Phase Field Method

@⌘j
@t

= �L
�F

�⌘j

@ci
@t

= r ·
✓
M(ci)r

�F

�ci

◆

solidification (dendrite growth)
phase transformations

grain growth/coarsening
crack growth

Phase Field Has Been Used in Many Areas

Vesicle membranes, with model
(right) and experiment (left) •  The phase field method is our method of choice because it can be:

-  Easily coupled to other physics such as mechanics or heat conduction
-  Quantitative and can represent real materials

Phase Field Documentation
•  Documentation for the phase field module is found on the

mooseframework.org wiki:

–  http://mooseframework.org/wiki/PhysicsModules/PhaseField/

Examples
•  Example input files for MOOSE-PF can be found in the examples

directory: moose/modules/phase_field/examples/

–  These are midsized 2D problems that run well on four processors

•  The tests can serve as additional examples
–  There are many tests for the various components of MOOSE
–  Each test runs in less then 2 seconds on one processor

The Phase Field Equations
•  Non-conserved variables (phases, grains, etc.) are evolved using an

Allen-Cahn (aka Ginzburg-Landau) type equation:

•  Conserved variables are evolved using a Cahn-Hilliard type equation:

•  Both equations are functions of variational derivatives of a functional
defining the free energy of the system in terms of the variables

F =

Z

V

0

@f
loc

(c
i

, ⌘
j

, ..., T) + E
d

+
X

i


i

2
(rc

i

)2 +
X

j


j

2
(r⌘

j

)2

1

A dV

Local energy Gradient energy

@⌘j
@t

= �L
�F

�⌘j

@ci
@t

= r ·
✓
M(ci)r

�F

�ci

◆

Variational Derivative

δF
δc

=
∂f
∂c
−∇⋅

∂f
∂∇c

The functional derivative (or variational derivative) relates a
change in a functional to a change in a function that the
functional depends on.
 Wikipedia, “Functional derivative”

•  Derivative with respect to the gradient!
•  Gradient energy term in phase field (very few functional forms)
•  Bulk free energy (contains the thermodynamics of the system)

–  Simple partial derivative

F = f (r,c,∇c)dV∫
F total free energy
f free energy density

Phase Field Implementation in MOOSE
•  The kernels required to solve the phase field equations have been

implemented in the phase field module
•  In general, a developer will not need to change the kernels but simply

use the kernels that have already been implemented
•  New models are implemented by defining the free energy and mobility

with their derivatives in material objects.

Derivative Function Materials
•  Each MOOSE Material class can provide multiple Material Properties

•  A Derivative Function Material is a MOOSE Material class that provides a well defined
set of Material Properties

–  A function value, stored in the material property F (the f_name of the Material)
–  All derivatives of F up to a given order with respect to the non-linear variables F depends on

•  The derivatives are regular Material Properties with an enforced naming convention

–  Example F, dF/dc, d^2F/dc^2, dF/deta, d^2F/dcdeta …
–  You don’t need to know the property names besides F, unless you want to look at them in the

output!

•  Recap:
Each Derivative Function Material provides one Function together with its derivatives!

•  That function can be a Free Energy Density, a Mobility, or whatever you may need.

Solving the Allen-Cahn Equation
•  After taking the variational derivative, the strong form of the Allen-Cahn

residual equation is

•  Each piece of the weak form of the residual equation has been
implemented in a kernel:

•  Parameters must be defined in a material object
•  The free energy density and its derivatives are defined in a

Derivative Function Material

TimeDerivative ACInterface AllenCahn

R
⌘j =

✓
@⌘

j

@t
,

m

◆
+ (L

j


j

r⌘
j

,r
m

) + L
j

✓
@f

loc

@⌘
j

+
@E

d

@⌘
j

,
m

◆

@⌘j
@t

= �L

✓
@F

@⌘j
+

@Ed

@⌘j
� jr2⌘j

◆

✓
@c

i

@t
,

m

◆
= �(

i

r2c
i

,r · (M
i

r
m

))�
✓
M

i

r
✓
@f

loc

@c
i

+
@E

d

@c
i

◆
,r

m

◆

Solving the Cahn-Hilliard Equation
•  Due to the fourth-order derivative, solving the Cahn-Hilliard equation

can be hard. In MOOSE there are two available approaches
–  Residual:

–  We can put this in weak form:

–  But, solving this residual requires higher order elements

•  Another option is to split the equation into two:

–  The split form can be solved with first-order elements.

✓
@c

i

@t
,

m

◆
=� (M

i

rµ
i

,r
m

)

(µ
i

,
m

) =

✓
@f

loc

@c
i

,
m

◆
+ (

i

rc
i

,r
m

) +

✓
@E

d

@c
i

,
m

◆

Strong Form Weak Form
@c

i

@t
=r · (M

i

rµ
i

)

µ
i

=
@f

loc

@c
i

� 
i

r2c
i

+
@E

d

@c
i

R
ci =

@c
i

@t
�r ·M(c

i

)

✓
r@f

loc

@c
i

+r@E
d

@c
i

◆
+r ·M(c

i

)r
�

i

r2c
i

�

The Direct Solution of the Cahn-Hilliard Equation
•  Each piece of the weak form of the Cahn-Hilliard residual equation has

been implemented in a kernel

•  Parameters must be defined in a material object

•  The free energy density and its derivatives are defined in an energy
material object (e.g. DerivativeParsedMaterial)

•  Mobilities can also depend on non-linear variables M(c) and can be
supplied through Derivative Function Materials

•  Due to the second order derivative, third order Hermite elements must
be used to discretize the variables

R
ci =

✓
@c

i

@t
,

m

◆
+

�

i

r2c
i

,r · (M
i

r
m

)
�
+

✓
M

i

r
✓
@f

loc

@c
i

+
@E

d

@c
i

◆
,r

m

◆

TimeDerivative CHInterface CahnHilliard

The Split Solution of the Cahn-Hilliard Equation
•  The weak form of the split Cahn-Hilliard residual equation has also

been implemented in kernels:

•  Parameters must be defined in a material object

•  The free energy density and its derivatives are defined in an energy
material object (as with the direct solve, making it easy to switch between the two)

•  Residuals are reversed to improve convergence
(CoupledTimeDerivative)

CoupledTimeDerivative SplitCHWRes

SplitCHParsed

Rµi =

✓
@ci
@t

, m

◆
+ (Mirµi,r m)

R
ci = (

i

rc
i

,r
m

) +

✓✓
@f

loc

@c
i

+
@E

d

@c
i

� µ
i

◆
,

m

◆

Cahn-Hilliard Solution
•  We have done a quantitative comparison between the direct and the

split solutions of the Cahn-Hilliard equation.
–  The split with 1st order elements is the most efficient.
–  The direct solution has the least error.

•  However, practically speaking the split is often the best choice, since
our simulations can be computationally expensive.

101 103 105

10−4

10−2

100

Computation time (s)

L 2 e
rro

r

1st O. Lagrange
2nd O. Lagrange
3rd O. Hermite

101 103 105

10−4

10−2

100

Computation time (s)
L 2 e

rro
r

1st O. Lagrange
2nd O. Lagrange
3rd O. Hermite

Newton JFNK

✓
M

i

r
✓
@f

loc

@c
i

+
@E

d

@c
i

◆
,r

m

◆

Simple Phase Field Model Development
•  As stated above, the microstructure evolves to minimize the free energy

•  Thus, the free energy functional is the major piece of the model

•  Phase field model development is modular, with all development focused
around the free energy

29

Free Energy Density Material

fbulk = 1/4*(1 + c)^2*(1 – c)^2
dfbulk/dc = c^3 – c
d^2fbulk/dc^2 = 3*c^2 – 1
d^3fbulk/dc^3 = 6*c

Free energy:

Differential
equations:

Phase field models that are not based on a free energy can be implemented
using normal MOOSE syntax

F =

Z

V

0

@f
loc

(c
i

, ⌘
j

, ..., T) + E
d

+
X

i


i

2
(rc

i

)2 +
X

j


j

2
(r⌘

j

)2

1

A dV

CahnHilliard SplitCHParsed

(
i

rc
i

,r
m

) +

✓✓
@f

loc

@c
i

+
@E

d

@c
i

� µ
i

◆
,

m

◆

Reminder:

∇f (c,η) =∇c ∂f
∂c
+∇η

∂f
∂η

Derivative Function Materials
•  The free energy and its derivatives can be defined in materials classes in four

different ways:
–  The derivatives can be defined directly by the user, by inheriting from
DerivativeFunctionMaterialBase

–  The derivatives can be calculated automatically, with the free energy defined in the
input file using DerivativeParsedMaterial

–  The derivatives can be calculated automatically, with the free energy hard coded in a
material object (ExpressionBuilder)

–  CALPHAD free energies (only for simple models now)

•  A derivative material has an f_name (the function name)

•  Property names of the derivatives are constructed automatically
(using the value of f_name according to fixed rules set in the
DerivativeMaterialPropertyNameInterface class)

•  Add Derivative Function Materials using the DerivativeSumMaterial
(sums function values and derivatives)

fbulk = µ

✓
�4
1

4
� �2

1

2
+

�4
2

4
� �2

2

2
+ ��2

1�
2
2

◆
fbulk = W (1 + c)2 (1� c)2

Automatic Free Energy Differentiation
•  To simplify development even more, you can only enter the free energy

functional and all derivatives are automatically evaluated analytically

[Materials]
 [./FreeEnergy]
 type = DerivativeParsedMaterial
 block = 0
 # name of the free energy function
 f_name = fbulk
 # vector of non-linear variables
 args = ’c’
 # Material properties.
 material_property_names = ’W’
 # Free energy functional
 function = ‘W*(1+c)^2*(1-c)^2’
 [../]
[]

[Materials]
 [./FreeEnergy]
 type = DerivativeParsedMaterial
 block = 0
 # name of the free energy function
 f_name = fbulk
 # vector of non-linear variables
 args = ’gr0 gr1’
 # Material properties.
 material_property_names = ’mu g’
 # Free energy functional
 function = 'mu*(gr0^4/4 - gr0^2/2 +
gr1^4/4 - gr1^2/2 + g*gr0^2*gr1^2)'
 [../]
[]

+ Cahn-Hilliard + Allen-Cahn

Automatic Differentiation
Symbolic differentiation of free energy
expressions

•  Based on FunctionParser
http://warp.povusers.org/FunctionParser/
to allow runtime specification of
mathematical expressions

•  Mathematical expressions
è Tree data structures

•  Recursively apply differentiation
rules starting at the root of the tree

•  Eliminate source of human error
•  Conserve developer time

Performance considerations
•  Aren’t interpreted functions slower than natively compiled functions?

•  Just In Time (JIT) compilation
for FParser functions

•  Parsed functions (automatic
differentiation) now as fast as
hand coded functions

•  Makes the rapid Phase Field
model development more
attractive

•  ~80ms compile time per
function. Results cached.

w
w

w
.in

l.g
ov

Examples and Applications

•  Multiscale investigation of void migration in a temperature gradient
(Soret effect):

•  MD studies identify the
diffusion mechanisms
active in the migration
of nanovoids

•  The migration of larger voids is modeled with MARMOT
with surface and lattice diffusion

Atomistic Mesoscale

From Desai (2009)

MARMOT Example: Void Migration

Void migration
Movie

Zhang et al., Computational Materials Science, 56 (2012) 161-5
35

Particle and Pore Pinning
•  Defects such as pores or precipitates on GBs impede the GB

migration by applying an opposing force.

•  To account for the interaction of GBs with a particle defined by the
variable c, we add a term to the free energy

•  The term is implemented in the kernel ACGBPoly

•  It is activated using the simplified grain growth syntax by adding a
coupled variable c

f(c, ⌘i) =
X

i

✓
⌘4i
4

� ⌘2i
2

◆
+

✓
c4

4
� c2

2

◆
+ aGB

X

i

X

j>i

⌘2i ⌘
2
j + as

X

i

c2⌘2i

[Kernels]
 [./PolycrystalKernel]
 c = c
 [../]
[]

Particle and Pore Pinning
•  We verified this model by simulating an identical system using MD

simulation and the phase field model
–  10 He bubbles (r = 6 nm) in Mo bicrystal (R = 20 nm) at 2700 K.

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

Time (ns)

G
ra

in
 v

ol
um

e
(n

m
3)

Phase field
MD

• MARMOT can be used in both hierarchical
and concurrent coupling

Operating
condition

range

Bulk material
properties

Operating
conditions

• Codes are run simultaneously and
information is passed back and forth.

• Captures interaction between the scales
• Can locate important coupled behaviors
• More computationally expensive

Concurrent coupling

Develop model

Coupling to Larger Length-Scales

Hierarchical coupling
• Lower length-scale models are run separately to

construct materials models.
• Macroscale simulations are efficient.

Passing analytical model into BISON

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg

Direct coupling with BISON

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg

Thank you!
•  For more information, please see http://mooseframework.org
•  Github repository: https://github.com/idaholab/moose
•  2-3 day training workshops at INL and other locations (keep an eye on

the website for dates and locations)
•  Mailing list: to subscribe, send an email to

moose-users+subscribe@googlegroups.com
or see
http://mooseframework.org/getting-started/

