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Overview 
•  General overview of the MOOSE framework 
•  MOOSE tools for meso-scale modeling 
•  Phase-field modeling 
•  Examples and applications 



Material Behavior 
•  A key objective of materials science is to understand the impact of 

microstructure on macroscale material behavior. 

•  An essential part of that is predicting the impact of microstructure 
evolution. 

Annealed Stainless Steel Cast Bronze Sintered UO2 Co-Al-W Superalloy Friction stir welded stainless steel 

Corrosion in stainless steel Micro-cracking in steel Irradiated UO2 fuel Hydride in Zircaloy 



Material Behavior is Multiphysics 
•  Material behavior is influenced by many different physics, for example: 
 

Mechanics 
•  Dislocations 
•  Cracking 
•  Stress-driven 
 Diffusion 

Chemistry 
•  Corrosion 
•  Oxidation 
•  Reactive  
 transport 

Electricity/Magnetism 
•  Electromigration 
•  Ferroelectricity 
•  Ferromagnetism 

Heat Conduction 
•  Species transport 
•  Melting 
•  Precipitation 



Material Behavior is Multiscale 
•  Material behavior at the atomistic and microscales drives macroscale 

response. 



Multiscale Modeling Approach 
•  Simulations at smaller scales inform the models at 

increasing length scales 

•  Identify important 
bulk mechanisms 

•  Determine bulk 
material 
parameters  

Atomic scale bulk 
DFT + MD 

•  Investigate role of idealized 
interfaces 

•  Determine interfacial properties 

Atomic scale microstructure MD 

Mesoscale models  

•  Predict and define 
microstructure 
evolution 

•  Determine effect of 
evolution on material 
properties 

Engineering 
scale 
simulation 

•  Predictive 
modeling at the 
engineering 
scale 

6 
nm µm mm 

Lengthscale 



Materials Modeling Requirements 
•  To model material behavior at the meso- and 

macroscales requires that we deal with its 
inherent complexity. 

•  A tool for modeling material behavior needs to: 
–  Easily handle multiple, tightly coupled physics 
–  Have tools for multiscale modeling 

•  It would also be nice if it 
–  Were simple to use and develop 
–  Took advantage of high performance computing 
–  Were free and open source 
–  Had a team of full time staff for development and 

support 
–  Had a strong user community 



Multiphysics Object Oriented Simulation Environment 

•  MOOSE is a finite-element, multiphysics framework that simplifies the 
development of advanced numerical applications. 

•  It provides a high-level interface to sophisticated nonlinear solvers and 
massively parallel computational capability. 

•  MOOSE has been used to model thermomechanics, neutronics, 
geomechanics, reactive transport, microstructure modeling, 
computational fluid dynamics, and more every day! 

•  It is open source and freely available at mooseframework.org 
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•  Tool for develop simulation tools that solve PDEs using FEM 

•  Spatial discretization with finite elements, where each variable can use a 
different element type, i.e. different shape functions 

•  Easy to couple multiple PDE 
•  Implicit or explicit time integration is available 
•  Dimension agnostic, same code can be used in 1- to 3-D 
•  Inherently parallel, solved with one to >10000 processors 
•  Provides access to mesh and time step adaptivity 
•  Easy simulation tool development 
•  Can read and write various mesh formats 
•  Strong user community 
•  Newton or Jacobian free solvers. 
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Mesh and Time Step Adaptivity 
•  Any model implemented with MOOSE has access to mesh and time 

step adaptivity 
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Mesh Adaptivity 
•  Requires no code development 
•  Refinement or coarsening is defined by 

a marker that be related to  
-  An error estimator 
-  Variable values 
-  Stipulated by some other model 

•  Error indicators include the 
-  Gradient jump indicator 
-  Flux jump indicator 
-  Laplacian jump indicator 
-  Analytical indicator 

Transient Time Step Adaptivity 
•  The time step in transient simulations 

can change with time 
•  Various time steppers exist to define dt: 

-  Defined by a function 
-  Adapts to maintain consistent solution 

behavior 
-  Adapts to maintain consistent solution 

time 
•  Users can write new time steppers 
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Mesoscale Modeling with the MOOSE framework 
•  All of the code required to easily create your own phase field 

application is in the open source MOOSE modules (MOOSE-PF). 

Framework 

Modules 

All of the code that forms 
the basis of the MOOSE 
framework 

Tensor Mechanics 
•  Linear elasticity 
•  Eigenstrains 
•  J2 Plasticity 
•  Crystal plasticity 
 

Phase Field 
•  Cahn-Hilliard and 

Allen-Cahn equations 
•  Free energy based 

development 
 

Heat Conduction 
•  Steady state 
•  Transient 
•  Locally varying 

thermal conductivity 
 
 



                                     Generic Phase Field Library 

•  Provides the tools necessary to develop phase field models using FEM. 

•  Base classes for solving Cahn Hilliard equations 
•  Direct solution 
•  Split solution 

•  Base classes for Allen-Cahn equations 
•  Grain growth model 
•  Grain remapping algorithm for improved efficiency 
•  Initial conditions 
•  Postprocessors for characterizing microstructure 

 
 
 
 
 
 
 
 
 
 
 
 



•  Provides the tools necessary for modeling mechanical deformation and 
stress at the mesoscale. 

•  Anisotropic elasticity tensors that can change spatially 
•  Linear elasticity 
•  Eigen strains 
•  Finite strain mechanics 

•  J2 plasticity 
•  Crystal plasticity 

 
 
 
 
 
 
 
 
 
 
 
 



•  Provides the tools necessary for modeling heat conduction and 
temperature gradients at the mesoscale. 

•  Steady state heat conduction 
•  Transient term 
•  Effective thermal conductivity calculation 
•  Spatially varying thermal conductivity 

 
 
 
 
 
 
 
 
 
 
 
 



•  Models the coevolution of microstructure and properties in reactor 
materials 

•  MARMOT is in use by researchers at laboratories and universities: 

Applicable to 
all materials 

Specifically 
for reactor 
materials 

MARMOT 

No physics 



•  Microstructure described by a set of continuous variables… 
–  Non-Conserved Order Parameters 

 

 
–  Conserved Concentrations 

 

•  The variables evolve to minimize a functional defining the free energy 
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solidification (dendrite growth) 
phase transformations 

grain growth/coarsening 
crack growth 

Phase Field Has Been Used in Many Areas 

Vesicle membranes, with model 
(right) and experiment (left) •  The phase field method is our method of choice because it can be: 

-  Easily coupled to other physics such as mechanics or heat conduction 
-  Quantitative and can represent real materials 



Phase Field Documentation 
•  Documentation for the phase field module is found on the 

mooseframework.org wiki: 
  

–  http://mooseframework.org/wiki/PhysicsModules/PhaseField/ 
 



Examples 
•  Example input files for MOOSE-PF can be found in the examples 

directory: moose/modules/phase_field/examples/

–  These are midsized 2D problems that run well on four processors 

•  The tests can serve as additional examples 
–  There are many tests for the various components of MOOSE  
–  Each test runs in less then 2 seconds on one processor 



The Phase Field Equations 
•  Non-conserved variables (phases, grains, etc.) are evolved using an 

Allen-Cahn (aka Ginzburg-Landau) type equation: 

•  Conserved variables are evolved using a Cahn-Hilliard type equation: 

•  Both equations are functions of variational derivatives of a functional 
defining the free energy of the system in terms of the variables 
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Variational Derivative 

δF
δc

=
∂f
∂c
−∇⋅

∂f
∂∇c

The functional derivative (or variational derivative) relates a 
change in a functional to a change in a function that the 
functional depends on. 
 Wikipedia, “Functional derivative” 

•  Derivative with respect to the gradient! 
•  Gradient energy term in phase field (very few functional forms) 
•  Bulk free energy (contains the thermodynamics of the system) 

–  Simple partial derivative 

F = f (r,c,∇c)dV∫
F  total free energy 
f  free energy density 



Phase Field Implementation in MOOSE 
•  The kernels required to solve the phase field equations have been 

implemented in the phase field module 
•  In general, a developer will not need to change the kernels but simply 

use the kernels that have already been implemented 
•  New models are implemented by defining the free energy and mobility 

with their derivatives in material objects. 



Derivative Function Materials 
•  Each MOOSE Material class can provide multiple Material Properties 

 

•  A Derivative Function Material is a MOOSE Material class that provides a well defined 
set of Material Properties 
 

–  A function value, stored in the material property F (the f_name of the Material) 
–  All derivatives of F up to a given order with respect to the non-linear variables F depends on 

 

•  The derivatives are regular Material Properties with an enforced naming convention 
 

–  Example F, dF/dc, d^2F/dc^2, dF/deta, d^2F/dcdeta … 
–  You don’t need to know the property names besides F, unless you want to look at them in the 

output! 
 

•  Recap:  
Each Derivative Function Material provides one Function together with its derivatives! 
 

•  That function can be a Free Energy Density, a Mobility, or whatever you may need. 



Solving the Allen-Cahn Equation 
•  After taking the variational derivative, the strong form of the Allen-Cahn 

residual equation is 

•  Each piece of the weak form of the residual equation has been 
implemented in a kernel: 

•  Parameters must be defined in a material object 
•  The free energy density and its derivatives are defined in a  

Derivative Function Material 

TimeDerivative ACInterface AllenCahn 

R
⌘j =

✓
@⌘

j

@t
, 

m

◆
+ (L

j


j

r⌘
j

,r 
m

) + L
j

✓
@f

loc

@⌘
j

+
@E

d

@⌘
j

, 
m

◆

@⌘j
@t

= �L

✓
@F

@⌘j
+

@Ed

@⌘j
� jr2⌘j

◆



✓
@c

i

@t
, 

m

◆
= �(

i

r2c
i

,r · (M
i

r 
m

))�
✓
M

i

r
✓
@f

loc

@c
i

+
@E

d

@c
i

◆
,r 

m

◆

Solving the Cahn-Hilliard Equation 
•  Due to the fourth-order derivative, solving the Cahn-Hilliard equation 

can be hard. In MOOSE there are two available approaches 
–  Residual: 

–  We can put this in weak form:  

 

–  But, solving this residual requires higher order elements 

•  Another option is to split the equation into two: 

 
 

–  The split form can be solved with first-order elements.  
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The Direct Solution of the Cahn-Hilliard Equation 
•  Each piece of the weak form of the Cahn-Hilliard residual equation has 

been implemented in a kernel 

•  Parameters must be defined in a material object 
 

•  The free energy density and its derivatives are defined in an energy 
material object (e.g. DerivativeParsedMaterial) 

•  Mobilities can also depend on non-linear variables M(c) and can be 
supplied through Derivative Function Materials 

•  Due to the second order derivative, third order Hermite elements must 
be used to discretize the variables 
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TimeDerivative CHInterface CahnHilliard 



The Split Solution of the Cahn-Hilliard Equation 
•  The weak form of the split Cahn-Hilliard residual equation has also 

been implemented in kernels: 

•  Parameters must be defined in a material object 

•  The free energy density and its derivatives are defined in an energy 
material object (as with the direct solve, making it easy to switch between the two) 

•  Residuals are reversed to improve convergence 
(CoupledTimeDerivative) 

CoupledTimeDerivative SplitCHWRes 

SplitCHParsed 
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Cahn-Hilliard Solution 
•  We have done a quantitative comparison between the direct and the 

split solutions of the Cahn-Hilliard equation.  
–  The split with 1st order elements is the most efficient. 
–  The direct solution has the least error. 

•  However, practically speaking the split is often the best choice, since 
our simulations can be computationally expensive. 
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Simple Phase Field Model Development 
•  As stated above, the microstructure evolves to minimize the free energy 

•  Thus, the free energy functional is the major piece of the model 

•  Phase field model development is modular, with all development focused 
around the free energy 
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Free Energy Density Material 

fbulk = 1/4*(1 + c)^2*(1 – c)^2 
dfbulk/dc     = c^3 – c 
d^2fbulk/dc^2 = 3*c^2 – 1 
d^3fbulk/dc^3 = 6*c 

Free energy: 

Differential 
equations: 

Phase field models that are not based on a free energy can be implemented 
using normal MOOSE syntax 
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Derivative Function Materials 
•  The free energy and its derivatives can be defined in materials classes in four 

different ways: 
–  The derivatives can be defined directly by the user, by inheriting from 
DerivativeFunctionMaterialBase 

–  The derivatives can be calculated automatically, with the free energy defined in the 
input file using DerivativeParsedMaterial 

–  The derivatives can be calculated automatically, with the free energy hard coded in a 
material object (ExpressionBuilder) 

–  CALPHAD free energies (only for simple models now)  

•  A derivative material has an f_name (the function name) 

•  Property names of the derivatives are constructed automatically 
(using the value of f_name according to fixed rules set in the  
DerivativeMaterialPropertyNameInterface class) 

•  Add Derivative Function Materials using the DerivativeSumMaterial 
(sums function values and derivatives)  
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Automatic Free Energy Differentiation 
•  To simplify development even more, you can only enter the free energy 

functional and all derivatives are automatically evaluated analytically 

[Materials] 
 [./FreeEnergy] 
    type = DerivativeParsedMaterial 
    block = 0 
    # name of the free energy function 
    f_name = fbulk 
    # vector of non-linear variables  
    args = ’c’ 
    # Material properties. 
    material_property_names = ’W’ 
    # Free energy functional 
    function = ‘W*(1+c)^2*(1-c)^2’ 
  [../] 
[] 
 

[Materials] 
 [./FreeEnergy] 
    type = DerivativeParsedMaterial 
    block = 0 
    # name of the free energy function 
    f_name = fbulk 
    # vector of non-linear variables  
    args = ’gr0 gr1’ 
    # Material properties. 
    material_property_names = ’mu g’ 
    # Free energy functional 
    function = 'mu*(gr0^4/4 - gr0^2/2 + 
gr1^4/4 - gr1^2/2 + g*gr0^2*gr1^2)' 
  [../] 
[] 
 

+ Cahn-Hilliard + Allen-Cahn 



Automatic Differentiation 
Symbolic differentiation of free energy 
expressions 
 

•  Based on FunctionParser  
http://warp.povusers.org/FunctionParser/ 
to allow runtime specification of 
mathematical expressions 

•  Mathematical expressions  
è Tree data structures 

•  Recursively apply differentiation  
rules starting at the root of the tree 

•  Eliminate source of human error 
•  Conserve developer time 



Performance considerations 
•  Aren’t interpreted functions slower than natively compiled functions? 

•  Just In Time (JIT) compilation 
for FParser functions 

•  Parsed functions (automatic 
differentiation) now as fast as 
hand coded functions 

•  Makes the rapid Phase Field 
model development more 
attractive 

•  ~80ms compile time per 
function. Results cached. 
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Examples and Applications 



•  Multiscale investigation of void migration in a temperature gradient 
(Soret effect): 

•  MD studies identify the 
diffusion mechanisms 
active in the migration 
of nanovoids 

•  The migration of larger voids is modeled with MARMOT 
with surface and lattice diffusion 

Atomistic Mesoscale 

From Desai (2009) 

MARMOT Example: Void Migration 

Void migration 
Movie 

Zhang et al., Computational Materials Science, 56 (2012) 161-5 
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Particle and Pore Pinning 
•  Defects such as pores or precipitates on GBs impede the GB 

migration by applying an opposing force.  

•  To account for the interaction of GBs with a particle defined by the 
variable c, we add a term to the free energy 

•  The term is implemented in the kernel ACGBPoly 

•  It is activated using the simplified grain growth syntax by adding a 
coupled variable c 
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[Kernels] 
  [./PolycrystalKernel] 
    c = c 
  [../] 
[] 



Particle and Pore Pinning 
•  We verified this model by simulating an identical system using MD 

simulation and the phase field model 
–  10 He bubbles (r = 6 nm) in Mo bicrystal (R = 20 nm) at 2700 K.  
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• MARMOT can be used in both hierarchical 
and concurrent coupling 

Operating 
condition 

range 

Bulk material 
properties 

Operating 
conditions 

• Codes are run simultaneously and 
information is passed back and forth. 

• Captures interaction between the scales 
• Can locate important coupled behaviors 
• More computationally expensive 

Concurrent coupling 

Develop model 

Coupling to Larger Length-Scales 

Hierarchical coupling 
• Lower length-scale models are run separately to 

construct materials models. 
• Macroscale simulations are efficient. 



Passing analytical model into BISON 

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg



Direct coupling with BISON 

k =
κGBκp

A + BT + CT 2 + Cvcv + Cici + Cgcg



Thank you! 
•  For more information, please see http://mooseframework.org 
•  Github repository: https://github.com/idaholab/moose 
•  2-3 day training workshops at INL and other locations (keep an eye on 

the website for dates and locations) 
•  Mailing list: to subscribe, send an email to  

moose-users+subscribe@googlegroups.com 
or see 
http://mooseframework.org/getting-started/  


