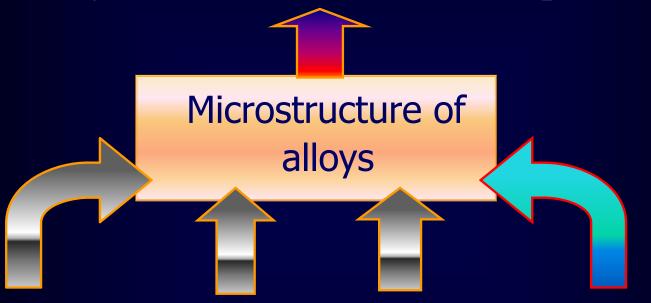
Artificial Neural Networks in Materials Science

N. S. Reddy

School of Materials Science and Engineering
Gyeongsang National University, Jinju,
Gyeongnam 660-701, Korea
nsreddy@gnu.ac.kr

Complex Materials System

Physical and Mechanical Properties

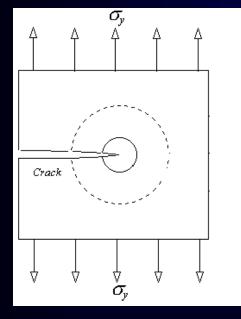


Mechanical Alloy contents: Treatment C, Si, Mn, S, P, Ni, Cr, Mo...

Solidification conditions

Heat treatment

Charpy



Critical stress intensity

Corrosion

Fatigue Tensile

Axioms

- All properties can be measured.
- Measurements can be used in safe design.
- Measurements can be used in control.

Conclusions

- There are useful ways of expressing properties
- Limited models relating properties to independent variables
- No method for predicting properties in general

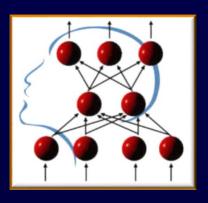
Pickering linear equations (1978)

$$\sigma_{\rm Y} = 53.9 + 32.3 \rm{W_{Mn}} + 83.2 \rm{W_{si}} + 354.2 \rm{(W_{Nf})}^{0.5} + 17.4 \rm{(d_{\alpha})}^{-0.5}$$

$$\sigma_{\rm U} = 294.1 + 27.7 W_{\rm Mn} + 83.2 W_{\rm si} + 3.85 (\% pearlite) + 7.7 (d_a)^{-0.5}$$

 $\sigma_{\rm Y}$ is predicted yield strength in MPa and $\sigma_{\rm U}$ is predicted ultimate tensile strength in MPa, WMn, WSi and WNf are the contents of manganese, silicon and free nitrogen in weight percent respectively, and d α is the ferrite grain size in millimeters.

Contents Artificial Neural Networks (ANN)



- What
- Why
- When

- How
- Where

ANN Model Demonstration

Materials Science Problems

- Grain refinement in Al-7Si alloy $(3 \rightarrow 1)$
- Phase volume fraction in Ti 6Al 4V alloy $(6 \rightarrow 2)$
- Mechanical Properties in Steels $(10 \rightarrow 5)$
- Estimation of Nano fiber diameter

Objectives

- To investigate the suitability of neural networks to complex Materials Systems.
- To predict properties/microstructure at new instances.
- To examine the Effect of Individual Elements on output parameters keeping other elements unaltered.
- To validate the model predictions with experiments

A Brief history

- Early stages
 - 1943 McCulloch-Pitts: Neuron as computing element
 - 1949 Hebb: Learning rule
 - 1958 Rosenblatt: Perceptron
 - 1960 Widrow-Hoff: Least mean square algorithm
- Recession
 - 1969 Minsky-Papert: Limitations perceptron model
- Revival
 - 1982 Hopfield: Recurrent network model
 - 1982 Kohonen: Self-organizing maps
 - 1986 Rumelhart et. al.: Backpropagation

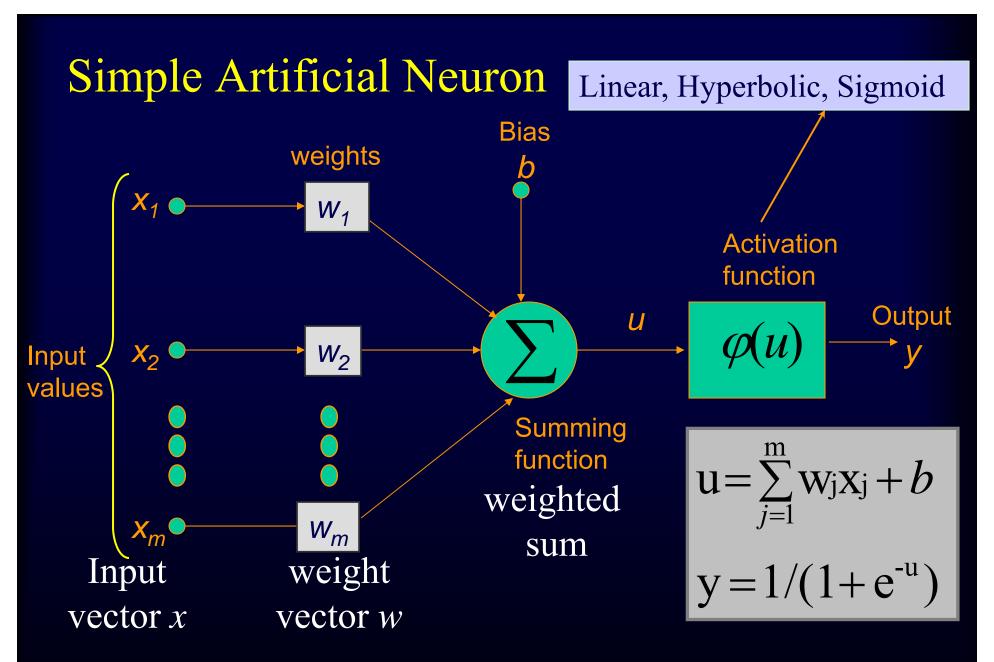
Where are ANN used?

- Recognizing and matching complicated, vague, or incomplete patterns
- Data is unreliable
- Problems with noisy data
 - Prediction
 - Classification
 - Data association
 - Data conceptualization
 - Filtering
 - Planning
 - _ **** ..

Neural Networks: Lessons from human brain

Artificial Neural networks (ANN) are modeling system, which mimics the human brain.

- Knowledge is acquired by the process of learning
- Storing the knowledge (like brain).
- Generalizations capability of the situation based on the acquired Knowledge



The n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping

Feed Forward Neural Networks (FFNN)

- Neurons are arranged in layers.
- Each unit is linked only in the unit in next layer, no units are linked between the same layer, back to the previous layer or skipping a layer.

Computations can proceed uniformly from input to output units.

Parameters

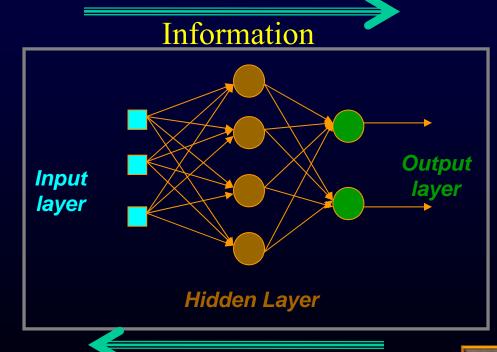
Learning Rate

Momentum Term

Hidden Layers

Hidden Neurons

Iterations



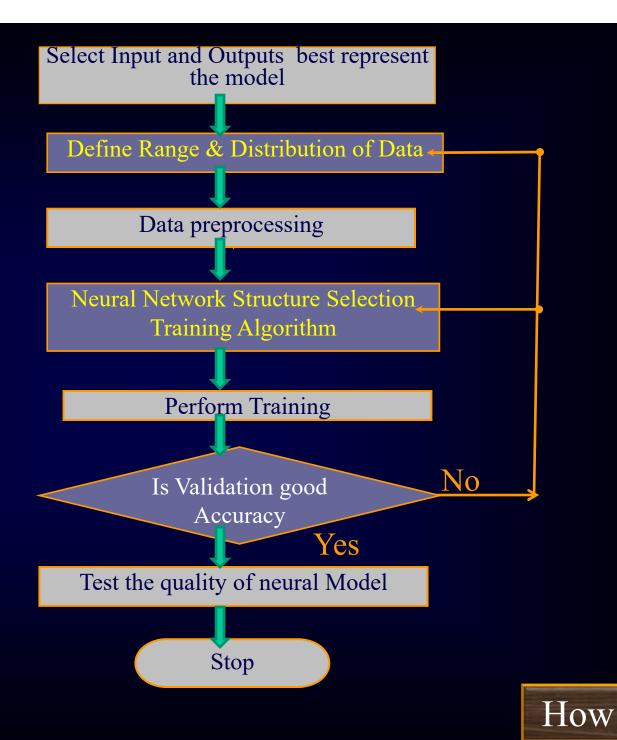
Error Propagation

What

ANN Model Flowchart

$$MSE = \frac{1}{p} \sum_{j=1}^{p} [y_j^d - y_j^o]^2$$

 y^d is the desired response, y^o is the output response from the ANN, and p is the of patterns presented



How does a neural network learn?

- A neural network learns by determining the relation between the inputs and outputs.
- By calculating the relative importance of the inputs and outputs the system can determine such relationships.
- Through trial and error the system compares its results with the expert provided results in the data until it has reached an accuracy level defined by the user.
 - With each trial the weight assigned to the inputs is changed until the desired results are reached.

Back propagation

- Desired output of the training examples
- Error = difference between actual & desired output
- Change weight relative to error size
- Calculate output layer error, then propagate back to previous layer
- Improved performance, very common!

Back Propagation Network

Algorithm

Step 1 : Initialize weights and offsets

Step 2 : Present Input and Desired Outputs

Step 3 : Calculate Actual Outputs

Step 4 : Adapt Weights

Step 5: Repeat by going to Step 2, Until Convergence

Training Phase & Testing Phase

- In the BPN, learning is performed as follows:
- 1. Randomly select a vector pair $(\mathbf{x}_p, \mathbf{y}_p)$ from the training set and call it (\mathbf{x}, \mathbf{y}) .
- 2. Use x as input to the BPN and successively compute the outputs of all neurons in the network (bottom-up) until you get the network output o.
- 3. Compute the error δ^{o}_{pk} , for the pattern p across all K output layer units by using the formula:

$$\delta_{pk}^o = (y_k - o_k) f'(net_k^o)$$

4. Compute the error δ^h_{pj} , for all J hidden layer units by using the formula:

$$\delta_{pj}^{h} = f'(net_k^h) \sum_{k=1}^{K} \delta_{pk}^{o} w_{kj}$$

5. Update the connection-weight values to the hidden layer by using the following equation:

$$w_{ji}(t+1) = w_{ji}(t) + \eta \delta_{pj}^h x_i$$

6. Update the connection-weight values to the output layer by using the following equation:

$$W_{kj}(t+1) = W_{kj}(t) + \eta \delta_{pk}^{o} f(net_j^h)$$

Repeat steps 1 to 6 for all vector pairs in the training set; this is called a training **epoch**.

Run as many epochs as required to reduce the network error E to fall below a **threshold** ε :

$$E = \sum_{p=1}^{P} \sum_{k=1}^{K} (\delta_{pk}^{o})^{2}$$

The only thing that we need to know before we can start our network is the **derivative** of our sigmoid function, for example, f'(net_k) for the output neurons:

$$f(\text{net}_k) = \frac{1}{1 + e^{-\text{net}_k}}$$

$$f'(\text{net}_k) = \frac{\partial f(\text{net}_k)}{\partial \text{net}_k} = o_k(1 - o_k)$$

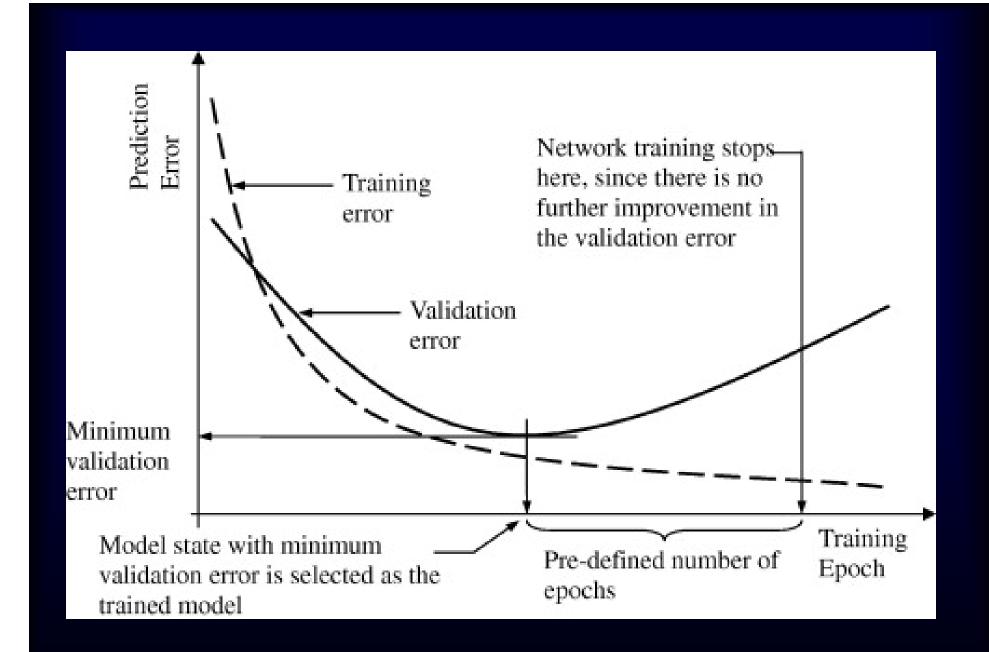
- •Now our BPN is ready to go!
- •If we choose the type and number of neurons in our network appropriately, after training the network should show the following behavior:
- If we input any of the training vectors, the network should yield the expected output vector (with some margin of error).
- If we input a vector that the network has never "seen" before, it should be able to generalize and yield a plausible output vector based on its knowledge about similar input vectors.

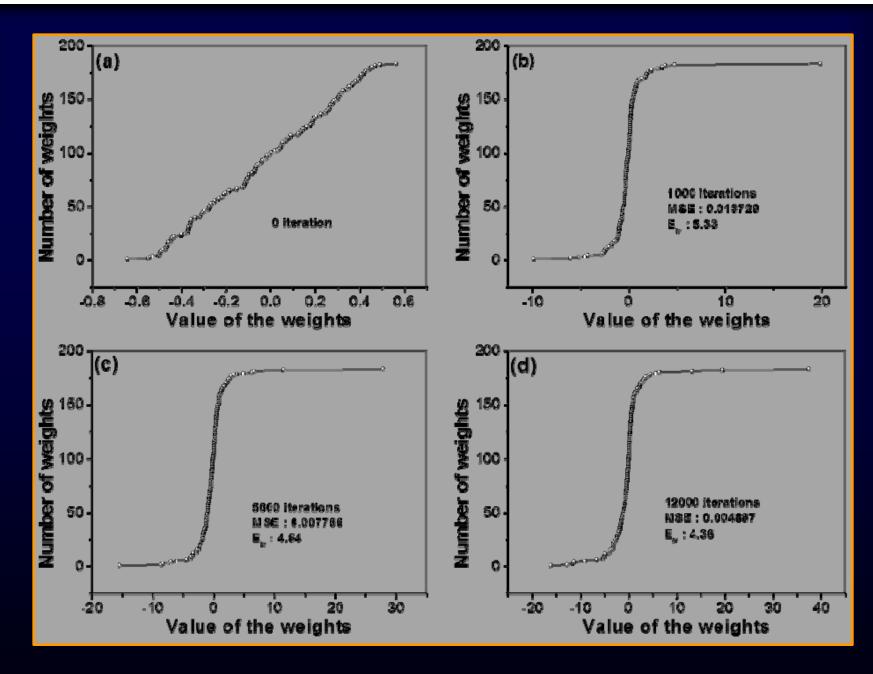
Criteria for model selection

$$RMSE = \frac{1}{p} \sum_{p} \sum_{i} (T_{ip} - O_{ip})^{2}$$

$$E_{\text{tr}}(y) = \frac{1}{N} \sum_{i=1}^{N} |(T_i(y) - O_i(y))|$$

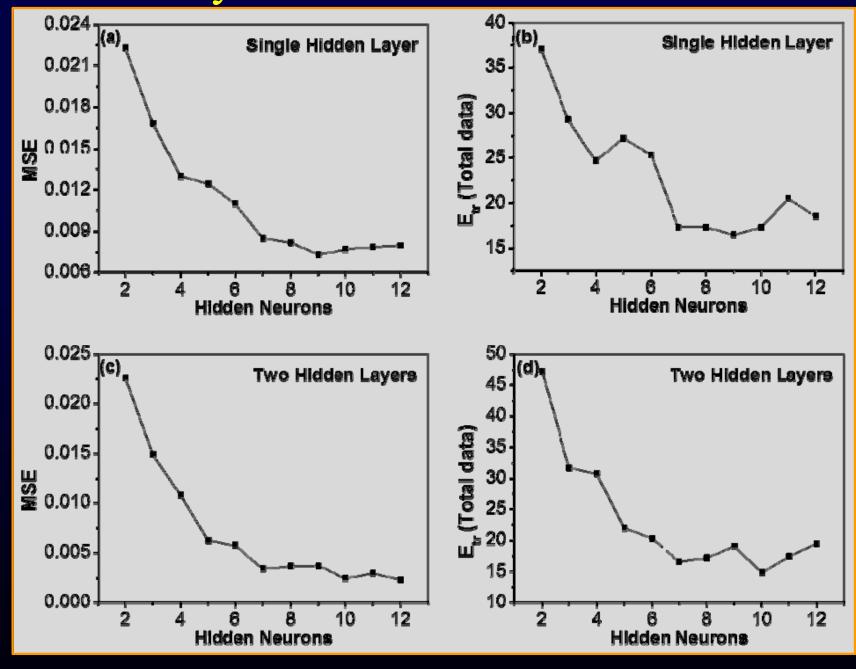
where Etr(y) = average error in prediction of training and testing data set for output parameter y, N = number of data sets, Ti(y) = targeted output, Oi(y) = output calculated.



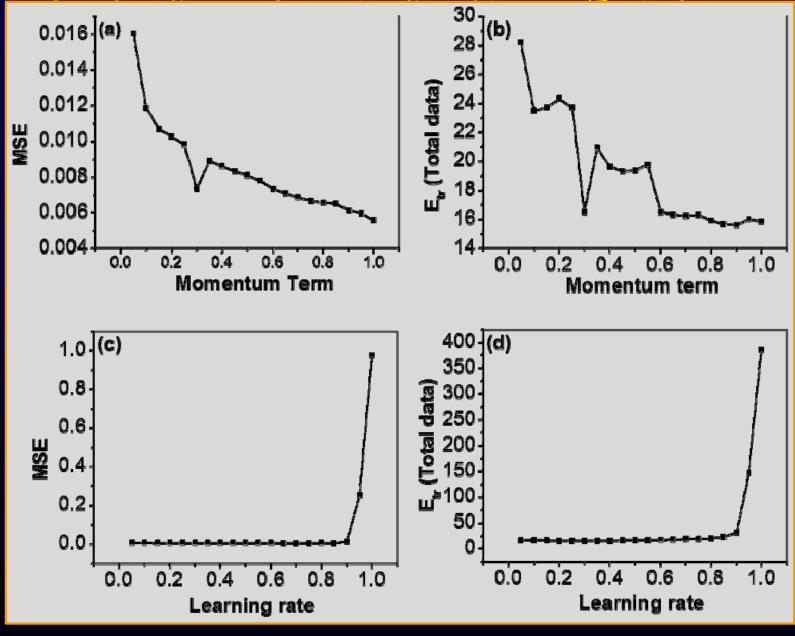


Variation of weights with varying iterations

Hidden layers



Momentum Term and Learning rate

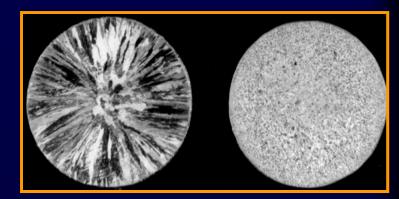


MHAT ANN CAN DO?

Demonstration of Neural Network Model

Example.1: Grain Refinement of Al-7Si Alloy

- □ Importance of Al-Si alloys
- □ Need of grain refinement



□ How to achieve grain refinement

Master alloys for Grain refinement of Al –7Si alloy

Binary Master Alloys

- A1 3B
- A1 3Ti

Ternary Master Alloys

- \bullet Al 1Ti 3B
- \bullet Al 3Ti 1B
- \cdot Al 3Ti 3B
- \bullet Al 3Ti 3B
- \bullet Al 3Ti 3B

Where

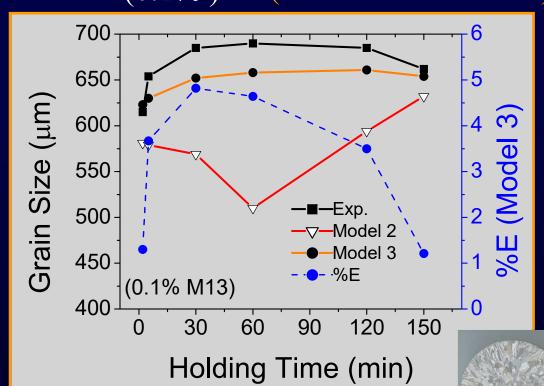
Example 1. Grain refinement of Aluminum and its alloys Al-5Ti-1B Master alloy Grain refiner Molten Aluminum Tundish Molten Al-5Ti-1B Master alloy Grain refiner **Aluminium** Aluminium Castings Al with grain Al without grain refiner refiner Al (Fine Equiaxed (Columnar Slabs grain) Grains) Mould Box Further Processing Applications of Aluminium Rolling Forging Extrusion **Packaging** Aerospace Electrical

Example 1. Statistics of Grain refinement data

System					
(Ťrain + Test) Sets		Minimum	Maximum	Mean	Standard Deviation
Binary Master alloy addition (48 +12)	Ti (%)	0	0.10	0.021	0.03
	B (%)	0	0.10	0.021	0.03
	Time (min)	0	120.00	40.69	43.86
	GS (µm)	98	610.00	276.08	158.16
Ternary Master alloy addition (120 + 30)	Ti (%)	0	0.10	0.029	0.028
	B (%)	0	0.10	0.029	0.028
	Time (min)	0	120	42.27	43.74
	GS (µm)	68	610.00	186.74	116.24
Total data (binary + Ternary alloy) (168 +42)	Ti (%)	0	0.10	0.023	0.029
	B (%)	0	0.10	0.022	0.028
	Time (min)	0	120.00	36.18	43.06
	GS (µm)	68	610.00	266.54	185.55

Validation of ANN model predictions with Al-1Ti-3B alloy

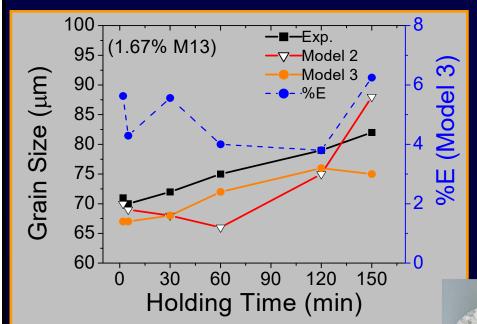
(0.1%) (B=0.003 & T=0.001)



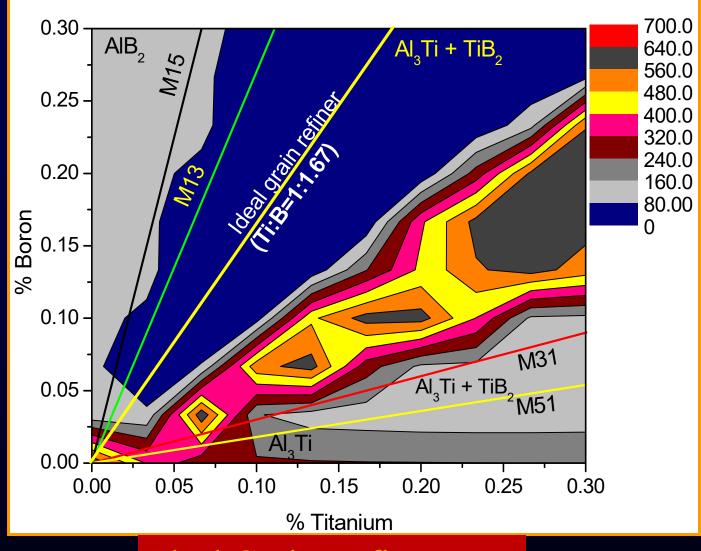
150

120

Validation of ANN model predictions with Al-1Ti-3B alloy 1.67% (B=0.05 & T=0.0167)



Predicted Grain refinement map of Al-7Si alloy



Color band numbers indicates grain size in µm

Master Alloys

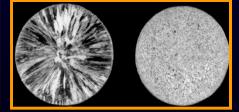
A1 - 1Ti - 3B (M13)

A1 - 3Ti - 1B (M31)

A1 - 3Ti - 3B (M33)

A1 - 1Ti - 5B (M15)

Al - 5Ti - 1B (M51)



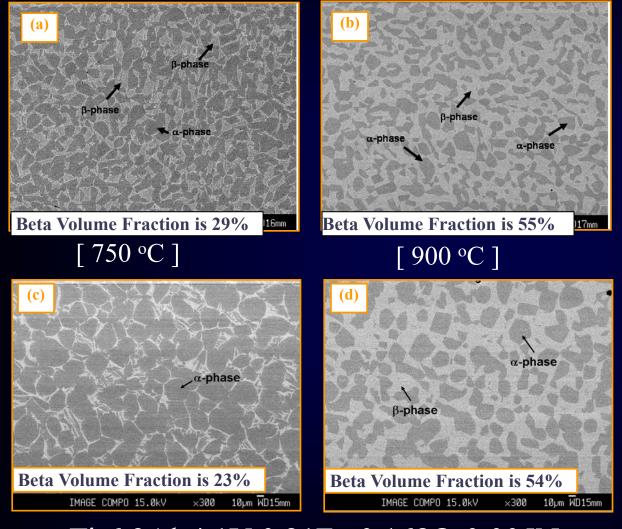
Ideal Grain Refiner

N.S. Reddy et al., Journal of Materials Performance, Vol 22, 2013

Where

Example 2.: Phase volume fraction in Ti-6Al-4V alloy

Ti-6.19Al-4.05V-0.19Fe-0.12O-0.01N



Volume fraction of α - β phases Ti ALLOY Alloy Heat contents: treatment Al, V, Fe,

O & N

Application of Ti-6Al-4V alloy

F-22 Raptor

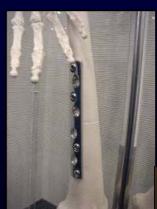
Guggenheim Museum

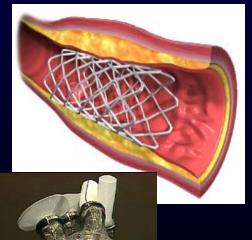
M2A3 Bradley

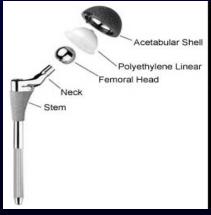
Tomahawk

Golf-head

Ti-6Al-4V alloy as a Biomaterial





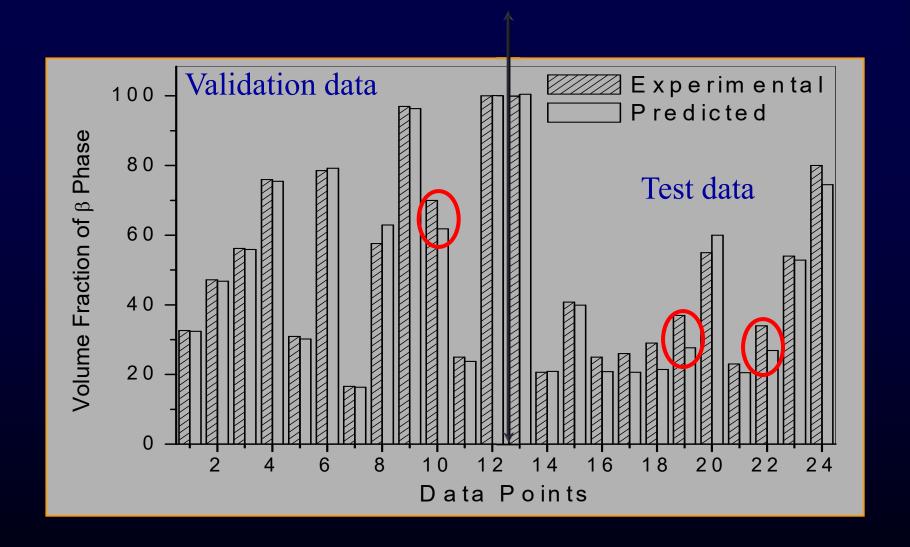


Statistics of data used for modeling (Ti Alloys)

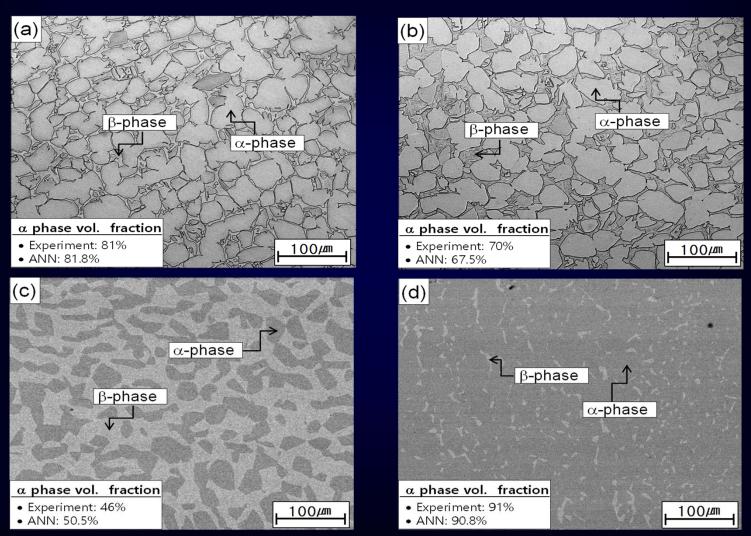
Experimental	Input and	Minimum	Maximum	Mean	Standard
data	output				deviation
	Variables				
	Al (%)	5.72	7	6.244	0.071
	V (%)	1.5	5	3.948	0.071
99 Training +	Fe (%)	0.01	3.04	0.444	0.049
35 test data	O (%)	0.08	0.3	0.148	0.016
sets	N (%)	0.003	0.02	0.007	0.000
	Temperature				
	(°C)	600	1000.62	861	132.158
	α phase volume				
	fraction (%)	0	100	52.7	42.002
	β phase volume				
	fraction (%)	0	100	47.3	42.002

N.S. Reddy et al., "Computational Materials Science", Vol. 107 2015

Performance of ANN Model: Validation

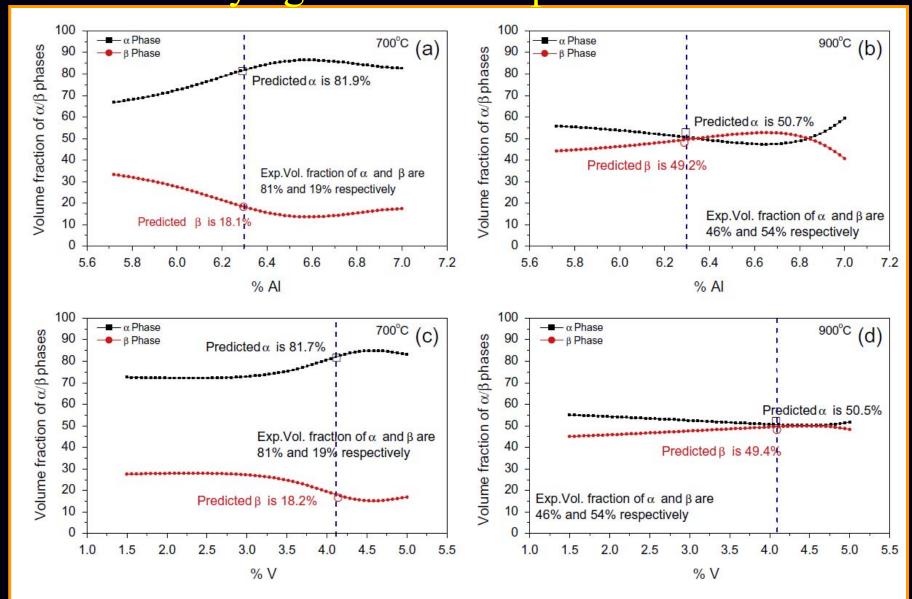


Ti-6.3Al-4.1V-0.21Fe-0.17-0.005N alloy quenched at (a) 700 °C, (b) 815 °C, (c) 900 °C, and (d) in Ti-6.85Al-1.6V-0.13Fe-0.17-0.001N quenched at 900 °C.

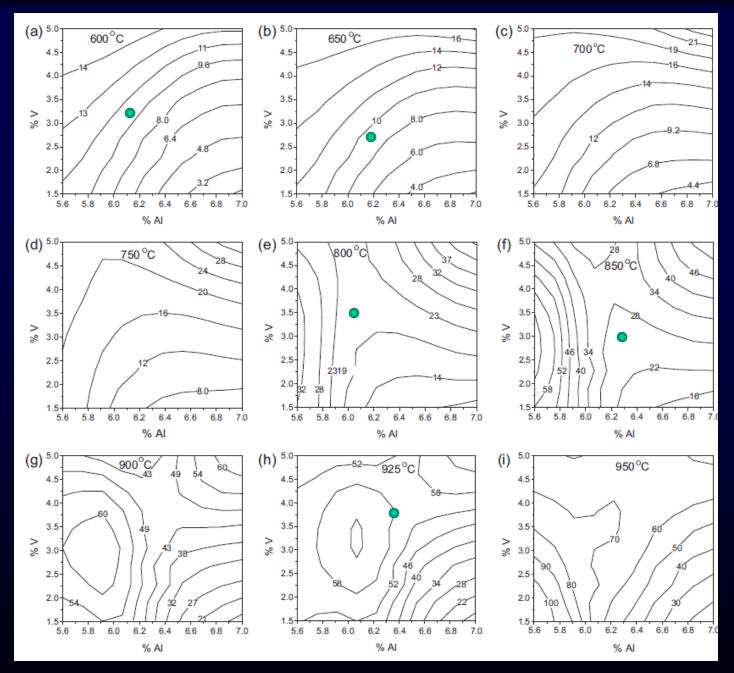


N.S. Reddy et al., "Computational Materials Science", Vol. 107 2015

Effect of alloying elements on phase volume fraction

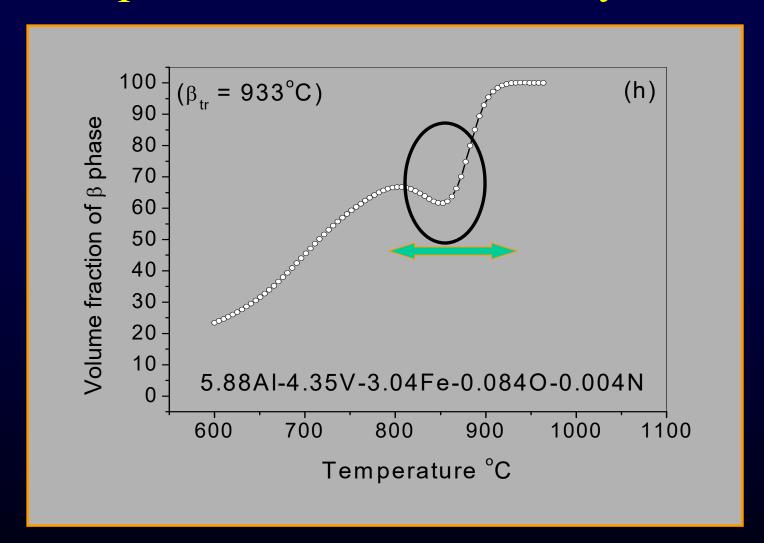


N.S. Reddy et al., "Computational Materials Science", Vol. 107, 2015

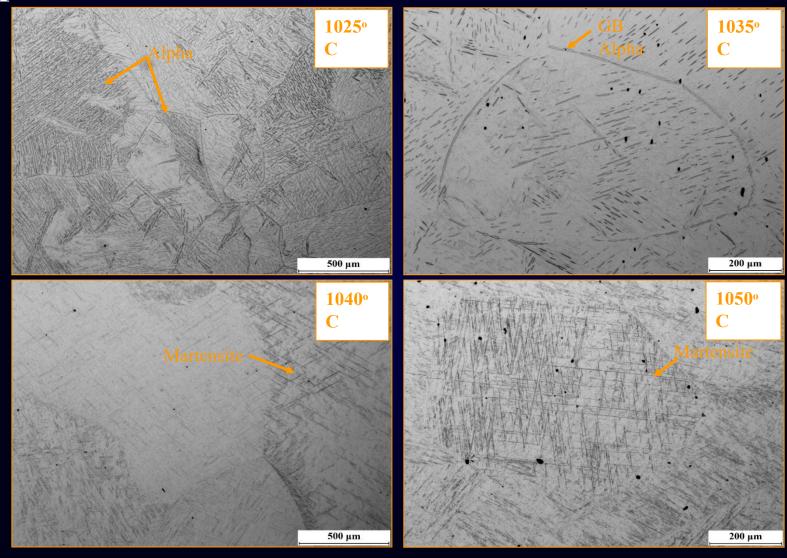


Volume Fraction of Beta map of Ti-Al- V at different temperatures

Unexpected Trend: Uncertainty

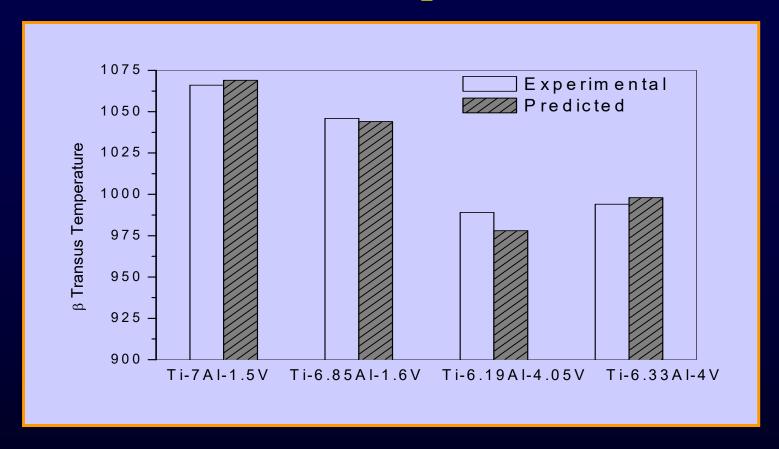


Estimation of beta transus temperature Experimental: 1040°C



>ANN Prediction: 1039.88°C; J Met Pro: 1076.77°C

Validation of ANN model predictions



Comparison of predicted and measured beta-transus temperatures for single-phase-alpha, near-alpha, and alpha/beta titanium alloys.

Example 3.Low alloy steels data examples

N.S. Reddy et al. / Materials Science and Engineering A 508 (2009) 93-105

Appendix A. Low alloy steels used in modeling: chemical composition, heat treatment parameters (CR: cooling rate in $^{\circ}$ C/s and TT: tempering temperature in $^{\circ}$ C) and mechanical properties.

Sl. no.	С	Si	Mn	Р	Ni	Сг	Мо	Mn/S	CR	TT	YS	UTS	EL	RA	IS
1	0.32	0.23	1.28	0.028	0.85	0.46	0.16	38	38	580	934	1019	18.0	54.0	35
2	0.32	0.23	1.28	0.028	0.85	0.46	0.16	38	16	620	736	845	22.0	59.0	42
3	0.33	0.19	1.45	0.026	0.89	0.56	0.12	73	16	605	785	888	21.0	60.0	72
4	0.33	0.19	1.45	0.026	0.89	0.56	0.12	73	7	625	693	824	21.5	57.0	43
5	0.35	0.19	1.5	0.026	0.93	0.57	0.18	75	7	650	681	839	21.5	58.0	89
6	0.35	0.19	1.5	0.026	0.93	0.57	0.18	75	3	650	730	870	24.0	56.0	87
7	0.35	0.19	1.33	0.026	0.91	0.43	0.15	67	3	550	683	850	21.0	57.0	46
8	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	38	450	1163	1222	15.0	50.0	15
9	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	38	500	1069	1131	18.5	55.0	26
10	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	38	550	906	993	19.0	55.5	49
11	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	38	600	786	906	24.0	61.5	75
12	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	38	650	718	821	25.5	66.0	93
13	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	38	675	692	763	27.0	64.5	94
14	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	38	700	575	753	27.5	64.5	90
15	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	12	450	727	888	21.0	56.5	23
16	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	12	500	645	821	24.0	62.5	52
17	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	12	550	622	783	26.0	63.0	70
18	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	12	600	579	757	27.0	66.0	91
19	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	12	625	582	737	27.5	61.0	80
20	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	7	500	639	800	23.0	58.0	36
21	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	7	550	614	777	25.0	60.0	53
22	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	7	600	623	777	24.0	63.0	70
23	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	7	625	543	707	27.0	64.5	79
24	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	7	675	870	1008	14.0	46.5	93
25	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	3	400	683	850	21.0	57.0	19
26	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	3	500	661	829	23.0	57.5	47
27	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	3	575	620	772	24.0	60.0	74
28	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	3	600	588	754	25.0	61.5	61
29	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	3	625	558	713	27.0	64.5	75
30	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	3	675	750	903	18.5	52.0	82
31	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	3	700	667	835	22.0	56.5	20
32	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	118	400	941	1002	20.0	56.0	24
33	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	118	500	855	912	22.5	61.0	42
34	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	118	550	745	810	24.5	63.5	79
35	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	118	600	710	778	26.0	64.0	84
36	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	34	400	985	1078	17.0	52.5	21
37	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	34	500	813	920	21.0	61.0	45
38	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	34	550	742	853	24.0	63.0	55
39	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	34	600	663	800	25.0	9	
40	0.35	0.25	0.33	0.032	0.91	0.43	0.15	8	34	625	605	766	26.0	6	T 71

Where

103

N.S. Reddy et al., "Materials Science and Engineering A", Vol. 508, 2009

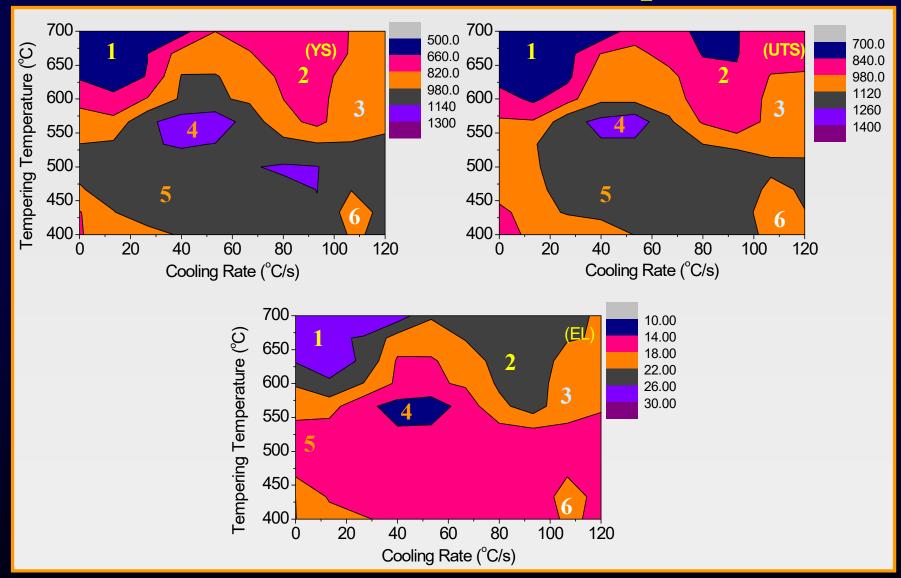
The range of low alloy steels (EN100 steels)

Composition (in wt.%)	Min.	Max.
C	0.32	0.44
Si	0.19	0.37
Mn	0.33	1.51
S	0.01	0.042
P	0.02	0.038
Ni	0.56	1.08
Cr	0.21	0.57
Mo	0.11	0.25

Heat treatment variables						
Cooling rate (°C/S)	C/S) 2.8 118					
Tempering Temperature (°C)	400	700				
Mechanical properties						
Y.S (MPa)	542	1194				
UTS (MPa)	707	1295				
% El	13	29				
% RA	31	67				
Impact Strength (J)	15	94				

YS: Yield strength, UTS: Ultimate tensile strength, %El: % Elongation, %RA: % Reduction in Area. Total data sets are 140 and 112 were used for training and 28 used for testing.

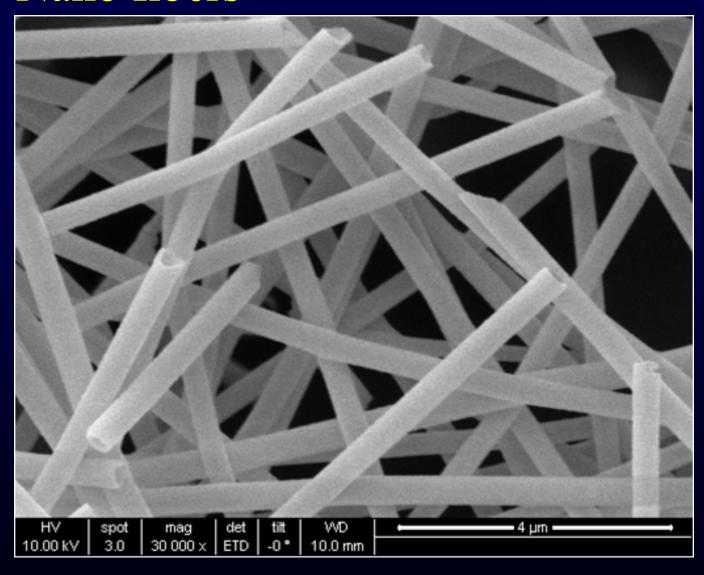
Simulated effect of heat treatment parameters

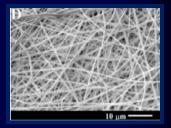


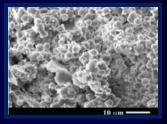
Example 4: Electrospinning



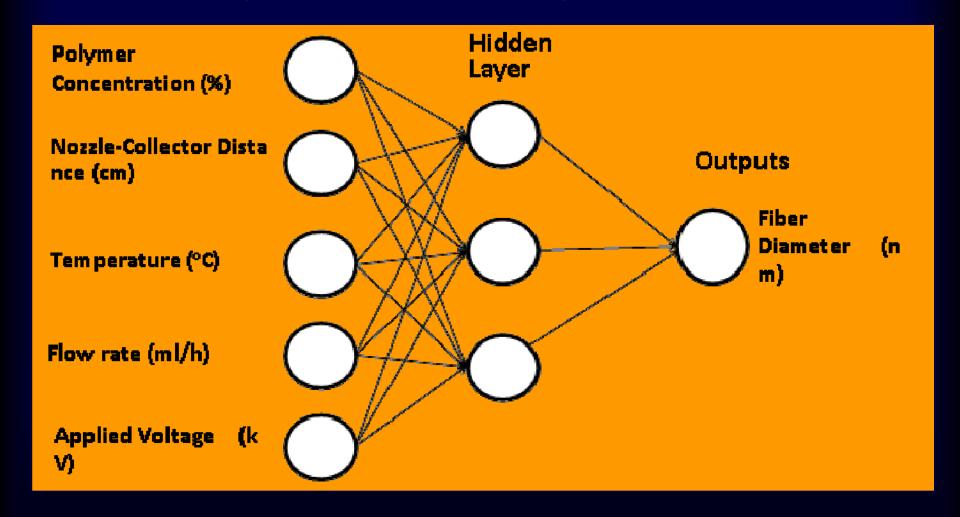
Nano fibers





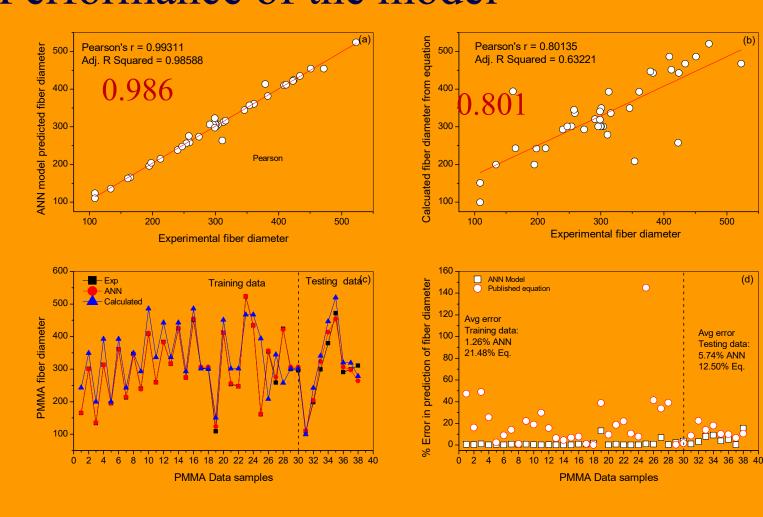


Modeling Electrospinning

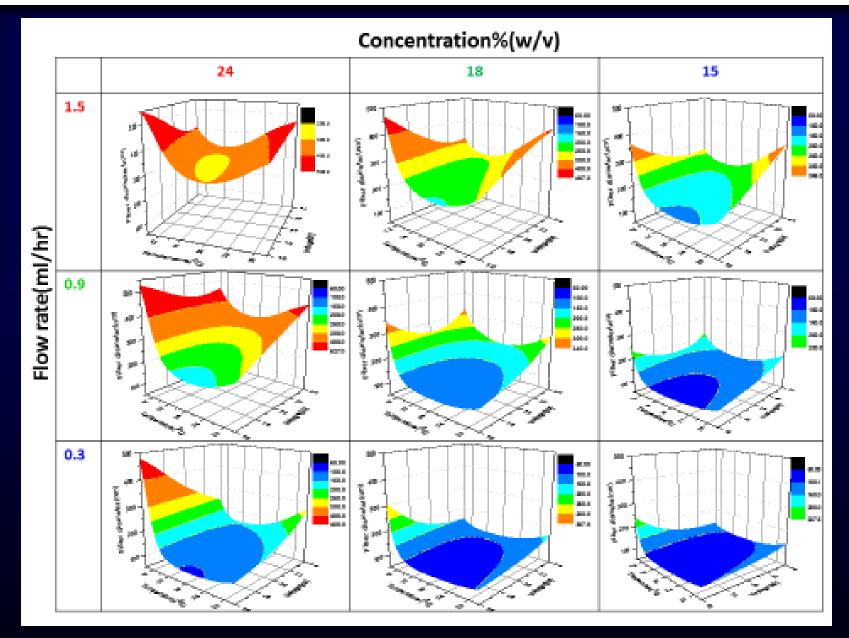


Milan K. Sadan, Hyo-Jun Ahn, G. S. Chauhan, N.S. Reddy, European Polymer Journal 74 (2016) 91.

Performance of the model

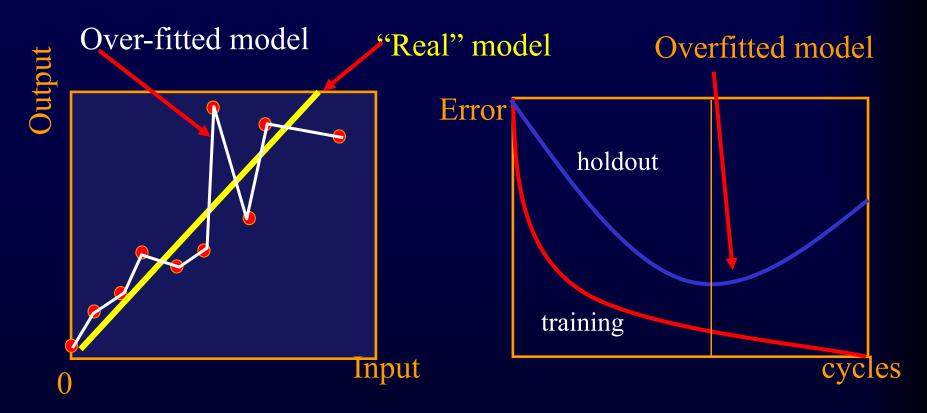


Milan K. Sadan, Hyo-Jun Ahn, G. S. Chauhan, N.S. Reddy, European Polymer Journal 74 (2016) 91.



Milan K. Sadan, Hyo-Jun Ahn, G. S. Chauhan, N.S. Reddy, European Polymer Journal 74 (2016) 91.

Disadvantages of ANN modeling



Difficult to design: There are no clear design rules

Hard or impossible to train: When to stop and Over training

Difficult to evaluate internal operation: It is difficult to find out

whether, and if so what tasks are performed by different parts of the net

Alternative Technology Lab, Graduate Institute for Ferrous Technology (GIFT), POSTECH, Korea

Summary (broad)

- Ø Present model capability to map the complex nature of the metallurgical system has been demonstrated.
- Sensitivity Analysis can be used to examine the effects of input variables on the output parameters, which is incredibly difficult to do experimentally.
- Ø Developed model is able to map the relation between the output parameters though this information is not fed to the model.
- The present model helps in reducing the experiments required and there by saving a lot of money, material and manpower for designing the new alloys for desired properties

I would like to acknowledge

- Prof. C.S. Lee
 - Department of Materials Science and Engineering, POSTECH, Korea
- Dr. Jeoung Han Kim, Dr. You Hwan Lee, and Dr. Chan Hee Park, Dr. Yeom, P L Narayana
 - Former students of Department of Materials Science and Engineering, POSTECH, Korea

Artificial Neural Networks Literature

Main text books:

- "Neural Networks: A Comprehensive Foundation", S. Haykin (very good -theoretical)
- "Pattern Recognition with Neural Networks", C. Bishop (very good-more accessible)
- "Practical Neural Network Recipe's in C++" T. Masters (emphasizing the practical aspects)

Review Articles:

- R. P. Lippman, "An introduction to Computing with Neural Nets" IEEE
 ASP Magazine, 4-22, April 1987.
- A. K. Jain, J. Mao, K. Mohuiddin, "Artificial Neural Networks: A Tutorial" IEEE Computer, March 1996, p. 31-44.
- H. K. D. H. Bhadeshia, "Neural Networks in Materials Science" ISIJ International, Vol. 39, 1999, 966-979
- H.K.D.H. Bhadeshia: Performance of Neural Networks in Materials Science, MST

Thank you ...