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Axioms

e All properties can be measured.
e Measurements can be used in safe design.
e Measurements can be used in control.

Conclusions

e There are useful ways of expressing properties

e Limited models relating properties to
independent variables

e No method for predicting properties in general

Thanks to Prof. HKDH Bhadeshia




Pickering linear equations (1978)

Gy = 53.9 +32.3Wy, + 83.2W; + 354.2(W ) O +
17.4(d )0

oy =294.1 +27.7W,,, + 83.2W_. + 3.85(%pearlite)
+7.7(d )0

oy 1s predicted yield strength in MPa and oy 1s predicted
ultimate tensile strength in MPa, WMn, WS1 and WNf are
the contents of manganese, silicon and free nitrogen in

weight percent respectively, and da 1s the ferrite grain size
in millimeters.
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Materials Science Problems

* Grain refinement in Al-7Si alloy (3 =2 1)
* Phase volume fraction in T1 — 6Al — 4V alloy (6 2 2)
* Mechanical Properties in Steels (10 = 5)

 Estimation of Nano fiber diameter
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Objectives

* To investigate the suitability of neural networks to

complex Materials Systems.

* To predict properties/microstructure at new

nstances.

* To examine the Effect of Individual Elements on

output parameters keeping other elements unaltered.

* To validate the model predictions with experiments




A Brief history
» Early stages

1943 McCulloch-Pitts: Neuron as computing element
1949 Hebb: Learning rule

1958 Rosenblatt: Perceptron
1960 Widrow-Hoff: Least mean square algorithm

* Recession
— 1969 Minsky-Papert: Limitations perceptron model

* Revival
— 1982 Hopfield: Recurrent network model

— 1982 Kohonen: Self-organizing maps
— 1986 Rumelhart et. al.: Backpropagation




Where are ANN used?

* Recognizing and matching complicated,
vague, or incomplete patterns

 Data 1s unrecliable

* Problems with noisy data
— Prediction
— Classification
— Data association
— Data conceptualization
— Filtering

— Planning
_ KRRk




Neural Networks: Lessons from human brain

Artificial Neural networks (ANN) are modeling
system, which mimics the human brain.

Knowledge 1s acquired by the process of
learning

Storing the knowledge (like brain).

Generalizations capability of the situation
based on the acquired Knowledge
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Feed Forward Neural Networks (FFNN)

* Neurons are arranged in layers.

 Each unit is linked only in the unit in next layer, no
units are linked between the same layer, back to the
previous layer or skipping a layer.

 Computations can proceed uniformly from input to
output units. S

Information

Parameters
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Hidden Layers
Hidden Neurons

[terations
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Error Propagation




ANN Model
Flowchart

yd is the desired
response, y° 1s the
output response from
the ANN, and p i1s the
of patterns presented

Select Input and Outputs best represent
the model
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How does a neural network learn?

* A neural network learns by determining the
relation between the inputs and outputs.

By calculating the relative importance of the
inputs and outputs the system can determine such
relationships.

Through trial and error the system compares its
results with the expert provided results in the data
until i1t has reached an accuracy level defined by
the user.
— With each trial the weight assigned to the inputs
1s changed until the desired results are reached.

| How




Back propagation

Desired output of the training examples

Error = difference between actual & desired

output

Change weig]

ht relative to error size

Calculate out

out layer error , then propagate

back to previous layer

Improved performance, very common!




Back Propagation Network

Algorithm

Step 1 : Initialize weights and offsets

Step 2 : Present Input and Desired Outputs
Step 3 : Calculate Actual Outputs

Step 4 : Adapt Weights

Step 5 : Repeat by going to Step 2, Until Convergence

Training Phase & Testing Phase




Learning in the BPN

In the BPN, learning 1s performed as follows:

. Randomly select a vector pair (x,, y,) from the training set and
call it (x, y).

. Use x as mput to the BPN and successively compute the outputs
of all neurons in the network (bottom-up) until you get the
network output o.

Compute the error 0°,,, for the pattern p across all K output layer
units by using the formula:

Sk = (Y, —0,) f'(net,)




Learning in the BPN

4. Compute the error 6" ., for all J hidden layer units by using the

formula:

pJ°

K
Opi = f'(netf)kz So W
=1

5. Update the connection-weight values to the hidden layer by using
the following equation:

Wy (T+1) =w; (1) + no’-x

pI7




Learning in the BPN

6. Update the connection-weight values to the output layer by using
the following equation:

Wi (t+1) = W, () + 775, T (netj“)

Repeat steps 1 to 6 for all vector pairs in the training set; this is called
a training epoch.

Run as many epochs as required to reduce the network error E to fall
below a threshold ¢:




Learning in the BPN

The only thing that we need to know before we can start our network
1s the derivative of our sigmoid function, for example, {’(net,) for
the output neurons:

]
4 e—net K

f(net, )= 1

of (net, )
onet,

f'(net, ) = =0, (1-0,)




Learning in the BPN

If we choose the type and number of neurons in our network
appropriately, after training the network should show the following
behavior:

 [f we input any of the training vectors, the network should yield the
expected output vector (with some margin of error).

 [f we input a vector that the network has never “seen” before, it
should be able to generalize and yield a plausible output vector based
on its knowledge about similar input vectors.




Criteria for model selection

RMSE = - ZZqT,p Oip )
p

N N
Ev(y) =D _|(Ti(y) = Oi(y))
=1

where Etr(y) = average error in prediction of training and
testing data set for output parameter y, N = number of

data sets, Ti(y) = targeted output, O1(y) = output
calculated.
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Hidden layers
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Momentum Term and [ earning r
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Example.1: Grain Refinement of Al 751 Alloy
O Importance of Al-S1 alloys |

O Need of grain refinement

O How to achieve grain refinement

Master alloys for Grain refinement of Al —7S1 alloy

Binary Master Alloys Ternary Master Alloys
e Al-3B 1-1T1—3B
e Al-3Ti 1-3T1— 1]
1—3T1— 3]
1—3T1— 3]
1—3T1— 3]

3
3
3
3




Examplel. Grain refinement of Aluminum and its alloys
Al-5Ti-1B Master alloy

Molten

Aluminum

“— Tundish
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Al-5Ti-1B Master alloy Aluminium
Grain refiner
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Castings

ithout Al with grain g
grain refiner refiner &
(Columnar (Fine Equiaxed §&
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Further Processing Applications of Aluminium
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Example 1. Statistics of Grain refinement data

(Train + Test)
Sets

Variables

Minimum

Maximum

Stan_da;”d
Deviation

Binary Master
alloy addition

(48 +12)

11 (%)
B (%)

Time
(min)
GS (num)

0
0
0

0.10
0.10
120.00

610.00

0.03
0.03
43.86

158.16

Ternary Master
alloy addition

(120 + 30)

11 (T)
B (%)

0.10
0.10

0.028
0.028

Time
(min)
GS (nm)

120
610.00

43.74
116.24

Total data
(binary +
Ternary alloy)

(168 +42)

11 (%)
B (%)

Time
(min)
GS (um)

0.10
0.10
120.00

610.00

0.029
0.028
43.06

185.55

N.S. Reddy et al., “Materials Science and Engineering A”’, Vol. 391, 2005



Validation of ANN model predictions with Al-1T1-3B alloy
(0.1%) (B=0.003 & T=0.001)
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Validation of ANN model predictions with Al-1T1-3B alloy
1.67%  (B=0.05 & T=0.0167)

T > . lmtExp.
1(1.67% M13) —v—Model 2
] Model 3 o

Grain Size (um)
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N.S. Reddy et al., “Materials Science and Engineering A”, Vol. 391, 2005 l Where



Predicted Grain refinement map of Al-7S1 alloy

700.0
ALTi +TiB, gy Color band

S numbers 1ndicates

Master Alloys

Al— 1Ti—3B (M13)
Al-3Ti— 1B (M31)
Al - 3Ti— 3B (M33)
Al— 1Ti— 5B (M15)

M3 Al—5Ti— 1B (M51
+TiB2\\/\51 I ( )

Al Ti
| ! | ! | !
0.10 0.15 0.20 0.25

% Titanium

Ideal Grain Refiner
N.S. Reddy et al., Journal of Materials Performance, Vol 22, 2013




Example 2. : Phase volume fraction in Ti1-6Al-4V alloy
Ti-6.19A1-4.05V-0.19Fe-0.120-0.01N

Volume fraction of
a-f3 phases

a-phase

\ § a-phase

[ 750 °C ]

Alloy  Heat
contents: treatment
Al 'V, Fe,

Beta Volume Fralction is 23% e Beta Volume Fraction is 54% O & N

IMAGE COMPD 15.BkY %300 1Bpm WD1Smm IMAGE COMPO 15.0kV %300 10ym WD15mm

T1-6.3A1-4.1V-0.21Fe-0.1680-0.005N




Application of Ti-6A1-4V alloy

F-22 Raptor Biomaterial Guggenheim Museum

T

M2A3 Bradley Tomahawk




T1-6Al1-4V alloy as a Biomaterial
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Statistics of data used for modeling (T1 Alloys)

Experimental | Input and Minimum | Maximum Standard
data output deviation
Variables
Al (%) : 7 : 0.071
V (%) : 5 : 0.071
99 Training + | Fe (%) : 3.04 : 0.049
35testdata | O (%) : 0.3 : 0.016
sets N (%) : 0.02 : 0.000
Temperature

(°C) 1000.62 132.158

N.S. Reddy et al., “Computational Materials Science”, Vol. 107 2015




Performance of ANN Model : Validation

Validation data | EZZExperimental
[ 1Predicted

Test data
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N.S. Reddy et al., “Materials Science and Engineering A", Vol. 434, 2006




Ti-6.3A1-4.1V-0.21Fe-0.17-0.005N alloy quenched at (a) 700 °C, (b)
815 °C, (¢) 900 °C, and (d) in Ti-6.85A1-1.6V-0.13Fe-0.17-0.001N qu
enched at 900 °C.

S TS j 4 £
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;

a phase vol. fraction| && 5 B2 R\ o phase vol. fraction==2%
=S .

e Experiment: 81% A S e Experiment: 70%
« ANN: 81.8% . : - « ANN: 67.5%

* ‘ e
P—Ehase i

a phase vol. fraction" ' a phase vol. fraction b | | ..
i (S oo N - s e 100 |
N.S. Reddy et al., “Computational Materials Science™, Vol. 107 2015




Effect of alloying elements on phase volume fraction
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Unexpected Trend: Uncertainty
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N.S. Reddy et al., “Materials Science and Engineering A”, Vol. 434, 2006



stimation of beta transus temperature
xperimental: 1040°C

» ANN Prediction: 1039.88°C ; J Met Pro: 1076.77°C




Validation of ANN model predictions

[ ]Experimental
2224 Predicted

Z
g Z
g _
: Z
: Z
_
: _
: Z

Z

AN

AN

A

Ti-7Al1-1.5V Ti-6.85

>

-1.6V Ti-6.19

>

-4.05V Ti-6.

w

3AI-4V

Comparison of predicted and measured beta-transus temperatures
for single-phase-alpha, near-alpha, and alpha/beta titanium alloys.

N.S. Reddy et al., “Materials Science and Engineering A”, Vol. 434, 2006 l Where



Example 3.Low alloy steels data examples

M.S. Reddy et al / Materials Science and Engineering A 508 (2009) 23-105

Appendix A. Low alloy steels used in modeling: chemical composition, heat treatment parameters (CR: cooling rate in °Cfs and
TT: tempering temperature in °C) and mechanical properties.

Sl no. Si Mn i Mo Mofs

1.28 . 38
1.28 . 38
1.45 . 73
1.45 . 73
1.5 . 75
1.5 . 75

[l By I A B O W S
g
~]

3
3
3
3
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
8
3
3
3
3
2
3
3
3
3
3
3
3

N.S. Reddy et al., “Mat




The range of low alloy steels (EN100 steels)

Composition
(in wt.%)
C : : Cooling rate (°C/S) 2.8 118

Tempering

Heat treatment variables

5 400 700
Temperature ("C)

Mechanical properties

Y.S (MPa) 542
UTS (MPa) 707
% El 13
% RA 31
Impact Strength (J) 15

YS: Yield strength, UTS: Ultimate tensile strength, %El: % Elongation, %RA: %
Reduction in Area. Total data sets are 140 and 112 were used for training and 28
used for testing.

N.S. Reddy et al., “Materials Science and Engineering A”, Vol. 508, 2009 l Where




Simulated effect of heat treatment parameters

Tempering Temperature (°C)

20 40 60 80
Cooling Rate (°C/s)

700
650
600
550
500
450
400

Tempering Temperature (°C)

100 20 40 60 80 100 120
Cooling Rate (°C/s)

10.00
. 14.00

18.00

22.00
26.00
30.00

20 40 60 80 100 120
Cooling Rate (°C/s)

N.S. Reddy et al., “Materials Science and Engineering A”, Vol. 508, 2009 WLEE



Example 4: Electrospinning

High Voltage Power Supply

=
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High Voltage Power Supply
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Modeling Electrospinning

Polymer Hidden

Concentration (%)

Nozzle-Collector Dista —
nce {cm) ! Outputs

Fiber

Tem perature {°C) .' :Ii;met er (n

Flow rate {ml/h)

Applied Voltage ({k
V)

Milan K. Sadan, Hyo-Jun Ahn, G. S. Chauhan, N.S. Reddy, European Polymer Journal 74 (2016) 91.

‘ Energy l What




Performance of the model

Pearson's r = 0.80135
Adj. R Squared = 0.63221

| Pearson's r = 0.99311
Adj. R Squared = 0.98588

0.986
IO

y O O Pearson
O
8

T T T T T T
100 200 300 400

O

0.801 o o<

S
_ 00O

O

ANN model predicted fiber diameter

Calcuated fiber diameter from equation

260 ' 360 ' 460
Experimental fiber diameter Experimental fiber diameter

600

[J ANN Model

-l-Exp Testing datdC) | :
(O Published equation

ANN
500 4 Calculated

| Avg error

Training data: Avg error
1.26% ANN Testing data:
80 21.48% Eq. 5.74% ANN
12.50% Eq.
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PMMA Data samples PMMA Data samples

200

PMMA fiber diameter

20
100+

% Error in prediction of fiber diameter

Milan K. Sadan, Hyo-Jun Ahn, G. S. Chauhan, N.S. Reddy, European Polymer Journal 74 (2016) 91.

Energy What
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Milan K. Sadan, Hyo-Jun Ahn, G. S. Chauhan, N.S. Reddy, European Polymer Journal 74 (2016) 91.

~ Energy Optimization of the parameters for required fiber dia. What



Disadvantages of ANN modeling

Over-fitted model “Real” model Overfitted model

Error

holdout

training

0 Input

Difficult to design:  There are no clear design rules
Hard or impossible to train:  When to stop and Over training

Difficult to evaluate internal operation: It 1s difficult to find out

whether, and 1f so what tasks are performed by different parts of the net

- Alternative Technology Lab, Graduate Institute for Ferrous Technology (GIFT), POSTECH, Korea




Summary (broad)

)

Present model capability to map the complex nature of the
metallurgical system has been demonstrated.

Sensitivity Analysis can be used to examine the effects of input
variables on the output parameters, which 1s incredibly difficult
to do experimentally.

Developed model is able to map the relation between the output
parameters though this information 1s not fed to the model.

The present model helps in reducing the experiments required
and there by saving a lot of money, material and manpower for
designing the new alloys for desired properties
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Artificial Neural Networks Literature

Main text books:

— “Neural Networks: A Comprehensive Foundation”, S. Haykin
(very good -theoretical)

— “Pattern Recognition with Neural Networks”, C. Bishop (very
good-more accessible)

— “Practical Neural Network Recipe's in C++ T. Masters
(emphasizing the practical aspects)

Review Articles:
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Tutorial”” IEEE Computer, March 1996’ p. 31-44.
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International, Vol. 39, 1999, 966-979
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Thank you ...




