
Summer School for Integrated
Computational Materials Education 2019

Introduction to Computation &
Fundamentals of Simulations

Katsuyo Thornton
Materials Science & Engineering

University of Michigan

THIS LECTURE WILL COVER

1. Approach to Computational Modeling

2. Numerical Method (Example)

3. Errors & Uncertainties

4. Validation and Verification

5. Programming Practice

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

2

1. Introduction: Approach to
Computational Modeling

Why Computational Materials Science?
• Versatility; same method can be applied to

many problems
• Increasing computational resources; many

more problems can be solved
• Physical insights and understanding;

applications beyond what is studied
How?

Develop a model of a materials system/process by
identifying the underlying physics; solve the
corresponding partial differential equations.

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

4

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Approaches to Computational Modeling

5

1 2 3,4

Fundamentals of Simulation
INGREDIENTS OF NUMERICAL SIMULATIONS

A simulation of a complex physical system often requires a
combination of powerful numerical methods. There are several
layers in a complete simulation development process.

1a. Physical Model
– Quantum Models (solving Schrödinger equation)
– Atomistic Models (Monte Carlo, Molecular Dynamics,

etc.)
– Continuum Models (e.g., Diffuse & Sharp Interface

Models)
1b. Time Dependence

– Dynamics (explicit/implicit time evolution)
– Steady State (relaxation to an equilibrium or self-similar

state)
Summer School for Integrated Computational Materials Education

University of Michigan, June 3-14, 2019
6

INGREDIENTS OF NUMERICAL SIMULATIONS
(CONTINUED)

2. Mathematical Description: e.g., PDE
– Eulerian vs. Lagrangian (e.g., in MD)

3. Numerical Method: e.g., Discretization of the Physical
Domain and/or Solving PDE
– Finite Difference Method
– Finite Element Method
– Boundary Integral Method

4. Supporting Numerical Methods

– Fast Fourier Transform
– Multigrid Method

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

7

2. Numerical Methods

Example: Finite Difference Method

Finite Difference Method Allows You to
Predict What Will Happen

- If you know the rate of
change, you can
predict what it will be
after a certain amount
of time

Rate of change
=

Change in something
Change in time

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

9

Predicting the future sometimes requires
math

- If you know the rate of
change, you can predict
what it will be after a
certain amount of time

- Example: an apple falling
from a tree

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

10

Predicting the future sometimes requires
math

- If you know the rate of
change, you can predict
what it will be after a
certain amount of time

- Example: an apple falling
from a tree

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

11

Predicting the future sometimes requires
math

- If you know the rate of
change, you can predict
what it will be after a
certain amount of time

- Example: an apple falling
from a tree

Ave. velocity
Total time, t

vave =
1
2
at

y = vavet =
1
2
at 2

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

12

But as Things Get More Complicated, You Need
a Computer

- Or a
computational
cluster with
thousands of
CPUs

- Models often
results in PDEs

- Discretization is
required to
solve it on a
computer

The Flux cluster at the
UM Modular Data Center

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

13

DISCRETE REPRESENTATION OF A
CONTINUOUS VARIABLE

Consider an independent continuous variable x ∈ [X1,X2]. We
take the discrete representation, xi, of x to be

Given a dependent function f(x) defined on the domain, a discrete
approximation of f(x) is given by

Similarly, given a differential equation on the domain, you can find
a discrete representation of the equation. Such representation
is called the difference equation.

xi = X1 +
�i�1

�=1 �x�, 1 < i � N

fi = f(xi)

x1

X

! x! x! x!2 3 4

1

x x x x3 542

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

14

QUALITY OF DISCRETE REPRESENTATION

The quality of the discrete representation depends on the
resolution and the behavior of the discretized object.

Ensure adequate resolution by representing the smallest
features by at least several points.

f(x)

x
j

f(x)

x

j

x

f

Poor Approximation Good Approximation

+

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

15

WHAT ARE FINITE DIFFERENCE
METHODS?

• Used to solve ODE or PDE.
• Based on the Taylor expansion.
• Probably the most simple method to understand.
• Discretization:

• Spatial: Divide space x ∈ [0,L] into N segments, Δx =
L/N. Calculate derivatives of a function to use in solving
a differential equation. Fix spatial coordinates (the
Eulerian description).

• Temporal: Set a time step of size Δt, and calculate the
new value of a function at t + Δt.

• There are many ways to discretize an equation;
accuracy and stability depends on it.

• Turns differential equations into algebraic equations.

16Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

CHARACTERIZATION OF DISCRETIZATION
ACCURACY

Example: First Derivative of f(x)
The Taylor expansion of f(x) around xi gives f'(x), f''(x), etc.
Method 1. One-sided (forward) differencing on x

An approximation to a quantity is nth order accurate if nth order term in
the Taylor expansion of the quantity is correctly reproduced.

f(xi+1)� f(xi) =

Taylor expansion for f(xi+1) around xi� ⌅⇤ ⇥
f(xi) + f �(xi)�x+

1

2
f ��(xi)�x2 + ... �f(xi)

⇥ f �(xi)�x+
1

2
f ��(xi)�x2

�⇤ f �(xi) =
f(xi+1)� f(xi)

�x
+ O(�x)⇤ ⇥� ⌅
truncation error

17Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Method 2. One-sided (backward) differencing on x

Method 3. Center differencing on x

f(xi)� f(xi�1) = f(xi)� (f(xi)� f ⇥(xi)�x+
1

2
f ⇥⇥(xi)�x2 � ...)

⇥ f ⇥(xi)�x� 1

2
f ⇥⇥(xi)�x2

�⇤ f ⇥(xi) =
f(xi)� f(xi�1)

�x
+ O(�x)⇤ ⇥� ⌅

truncation error

f(xi+1)� f(xi�1) ⇥ f(xi) + f ⇥(xi)�x+
1

2
f ⇥⇥(xi)�x2 +

1

6
f ⇥⇥⇥(xi)�x3

� (f(xi)� f ⇥(xi)�x+
1

2
f ⇥⇥(xi)�x2 � 1

6
f ⇥⇥⇥(xi)�x3)

= 2f ⇥(xi)�x+
1

3
f ⇥⇥⇥(xi)�x3

�⇤ f ⇥(xi) =
f(xi+1)� f(xi�1)

2�x
+ O(�x2)⇤ ⇥� ⌅
truncation error

18Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

INTEGRATION OF ODE/INITIAL VALUE
PROBLEM

First-order ODEs occur very commonly in physics, with the
variable being time. An initial value problem is specified
by a differential equation (or a set) for a function u(t) and
its initial value, u(t = t0).

Consider an example:

We want to find an approximate solution. We’ll do this by
step in time with size Δt, i.e., find u(t + Δt) given u(t). Let’s
use the results we obtained for forward and centered
differencing:

du
dt = f(u, t)

du

dt

����
t=tn

=

⇥
[u(tn+1)� u(tn)]/�t , Forward

[u(tn+1)� u(tn�1)]/2�t , Centered

19Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Take the forward differencing case (denoting the
current time and value of u with tn and un,
respectively):

You have a choice of which t to evaluate f(u, t). Since
we do not know the value of u(t) at tn+1, let’s simply
evaluate f(u, t) at t = tn.

This method is called the forward Euler time stepping.
The centered differencing leads to the Leap-Frog

method, which is unstable.
For PDEs, the derivatives on the right hand side are

also discretized in the same manner.

un+1 = un + f(u, t) · �t

un+1 = un + f(un, tn) · �t

20Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

TEMPORAL INTEGRATION SCHEMES

The schemes for integrating a differential equation in
time can be divided into three categories.

Explicit Method The
evaluation of a future
quantity does not require
the future value itself.
The schemes on the
previous page fall in this
category.

!

t

f(t)

f(t)

f(t)

t

1

0

t

0

1

.

t

f(t)

0

First-Order Explicit Method

21Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

where L1 and L2 are spatial differential operators. Sometimes
only one of the differential operators benefit significantly from
implicit treatment. In such cases, a technique called “operator
splitting” is used which allows a different time-stepping
scheme to each of the differential operators.

Implicit Method The
evaluation of a future
quantity requires the
future value itself. This
usually results in solving
a matrix equation or
iteration.
Semi-implicit Method A
PDE is often in the form

�u
�t = (L1 + L2)u

22

f(t)1

!

f(t)

f(t)

t

0

t

1
f(t)

0 tt

.

1

First-Order Implicit Method

f(t1)

f(t1)
predicted

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

3. Errors & Uncertainties

SOURCES OF ERRORS
Model Error: Differences between the physical system and the

�equivalent� as described by governing equations, initial
condition and boundary conditions.

Truncation or Discretization Error: This error results from
converting the analytical form of equations to a discretized
form that can be solved numerically. Error analysis gives you
an estimate of error. Accuracy depends on the resolution (in
both spatial and time coordinates).

Rounding Error: This error results from floating operations in
digital equipment. Accuracy of computational operations
generally receives little attention. Often, carrying enough
precision provides sufficient accuracy. However, in special
cases, care must be taken.

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

24

MODELS
This is probably the most difficult issue to address and examine.
Questions:

• What approximations are made in deriving the governing
equations? (e.g., sharp interface model). How good or bad
are they?

• What effects excluded in the model are there, and what
are the magnitude of the effects?

• Are you using physically consistent parameters? If not,
what are the effects? (e.g., gradient coefficient)

• If there are input parameter/function to a model, how good
are they? What are the range of errors, and how sensitive
is your model to the changes in the input? (e.g., free
energy, potential, etc.)

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

25

DISCRETIZATION ERROR
The magnitude and behavior of error can be estimated by error
analysis.

Ex. Verlet algorithm (for MD calculation)

As MD is a Lagrangian formulation (i.e., we follow the location
of mass), the location of an atom needs to be evolved in time
as prescribed by the force field. Given f(t) on the mass m at
r(t), Verlet method gives the updated location by

r(t + ∆t) ≈ 2r(t) − r(t − ∆t) + (f (t)/m)∆t2

How much error is there in this approximation? O(∆t4).
There are in fact many ways to discretize a single equation. The accuracy (and

stability) must be checked for each method-equation combination.
Summer School for Integrated Computational Materials Education

University of Michigan, June 3-14, 2019
26

ROUNDING ERROR
Computers represent numbers in binary

Single precision binary floating-point format (in a 32bit machine)

Double precision binary floating-point format

Each has specific maximum and minimum numbers & rounding error

From Wikipedia

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

27

ROUNDING ERROR

• Cancellation error, e.g., a small difference such as 1 − exp(−δ)

when δ is small.

• Recursive relations, where errors can propagate/accumulate

and numerical instabilities may occur.

• Sums of terms with greatly varied magnitude, e.g.,
∑

∞

k=1
k−2(= π2/6). If summed from k = 1 until the change is

small, F90 single precision calculation gives only 4 digits of

accuracy (out of 9). If summed large to small, you get 8 digits

of accuracy.

ROUNDING ERROR
Can be important!

• Dynamical evolution or iteration not associated with minimization
of residual error

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

28

4. Validation & Verification

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Validation & Verification: Why?

Why is it important? A simulation tool can become a black box.

Black box
- Dictionary definition: a usually complicated electronic

device that functions and is packaged as a unit and whose
internal mechanism is usually hidden from or mysterious to
the user; broadly : anything that has mysterious or unknown
internal functions or mechanisms
- As simulation codes get complex, it can become a black

box. The input may be of good quality, but it does not
guarantee good output quality.

30

Validation & Verification (V&V)
1. Numerical Accuracy (assuming bug-free) Easy to

address. The simplest way is to increase the
resolution in space and time and the change is
within the acceptable range (i.e., numerically
converged).

2. Physical Assumptions (in the model) Sometimes
difficult. If ignoring some effects (e.g., terms in
equations), verify that the magnitude of the effect is
small compared to other effects that are included
(e.g., compare energies associated with different
effects). Also check that this is true throughout the
simulation if possible. Dimensionless numbers are
often useful in determining the regimes that certain
effects must be considered/can be ignored.
Ultimately, a direct comparison to experiment is the
best, but it is not always possible.

Dimensionless
numbers in
fluid dynamics

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Validation & Verification (Continued)

3. System Size System size is often limited by the computational
resources. Most physical systems have a much larger system size than
those that can be simulated.

a. Edge Effect

• A simple cubic crystal of 1000 atoms has 49% (in 3D) of them on the
surface, and the edge effect becomes important.
• Consider using periodic boundary conditions at the cell edges.

~500
atoms

32

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Validation & Verification (Continued)
b. Size Effect
• If the periodic unit cell is too small compared to the feature

within it, or if a point can see its own image, the results
become influenced by the system size.

• This manifests as domination and damping of features with
certain wavelengths as any fluctuation must be compatible
with the imposed periodicity.

• Unless the size of the lattice is physically consistent, it may
lead to unphysical effects, such as an artificial ordering.

• Verification: Study the effects of limited system size by using a
smaller or (preferably) larger system and compare.

33

Summer School for Integrated Computational Materials Education

University of Michigan, June 3-14, 2019

Validation & Verification (Continued)

4. Code/method verification It is difficult to write a bug-free code!

Test runs can often give indications for bugs.

a. Using analytical solutions

• Set up simulations that corresponds to setups that have

analytical solutions (Ex. Reaction-diffusion in cylinder); more later.

b. Using your physical intuition

• Always think about what you would

expect to see from a simulation.

Does the result make sense?

c. Unit tests

• Test piece by piece.

34

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Validation & Verification (Continued)

4. Code/method verification (continued)
d. Method of Manufactured Solutions
• For the given PDE, add a forcing term and assume an analytical

solution. Obtain the analytical form of the forcing function.
e. Debugging
• Always start with small calculations!!
• Use debugger & check points
• Be detailed

35

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Use of Analytical Methods

Even if your goal is to study a system that is very complicated,
it is always a good idea to simplify the problem and study it
analytically.

The results can be used to validate your code, as it is always
easy to set up a simple case in robust numerical simulation.
This is important as it is not very difficult to leave a bug in a
big codes.

It also gives you an appreciation and understanding of the
physical problem at a higher level. You may learn something
new and get an extra publication on the side.

36

5. Programming

Good coding practice
Efficiency

Pointers on Programming (Discussion)

• Key: Break down the task into smaller pieces
- Outlines are helpful in doing this

• Identify repeated tasks and make a subroutine or function
• Stream-line the tasks by looking from the bird’s eye view (for

the big picture)
• Get the details right by being meticulous
• Make the variable names something anyone can understand
• Write in comments
• Use version control software
• Learn to use debugger
• Know how to check your solutions

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

38

Pointers on Programming (Discussion)

• Key: Break down the task into smaller pieces
- Outlines are helpful in doing this

• Identify repeated tasks and make a subroutine or function
• Stream-line the tasks by looking from the bird’s eye view (for

the big picture)
• Get the details right by being meticulous
• Make the variable names something anyone can understand
• Write in comments
• Use version control software
• Learn to use debugger
• Know how to check your solutions

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

39

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Efficiency in Computation
• CPU time efficiency
• Storage efficiency
• Programming efficiency (human time)

Ask:

1. How long would a calculation take?
2. How much memory/storage does it take? (Use 8 byte per
double precision)
3. How much time do I want to spend programming?

Find the limiting factor. If the computation takes too long using a
simple method, you would have to pay more attention to this
issue and compromise on others.

40

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

Trade-offs: Example for Time stepping

41

Summer School for Integrated Computational Materials Education
University of Michigan, June 3-14, 2019

42

