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THIS LECTURE WILL COVER

1. Approach to Computational Modeling

2. Numerical Method (Example)

3. Errors & Uncertainties

4. Validation and Verification

5. Programming Practice
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1. Introduction: Approach to 
Computational Modeling



Why Computational Materials Science?
• Versatility; same method can be applied to 

many problems
• Increasing computational resources; many 

more problems can be solved 
• Physical insights and understanding; 

applications beyond what is studied
How?

Develop a model of a materials system/process by 
identifying the underlying physics; solve the 
corresponding partial differential equations.
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Fundamentals of Simulation
INGREDIENTS OF NUMERICAL SIMULATIONS

A simulation of a complex physical system often requires a
combination of powerful numerical methods. There are several
layers in a complete simulation development process.

1a. Physical Model
– Quantum Models (solving Schrödinger equation)
– Atomistic Models (Monte Carlo, Molecular Dynamics, 

etc.)
– Continuum Models (e.g., Diffuse & Sharp Interface 

Models)
1b. Time Dependence

– Dynamics (explicit/implicit time evolution)
– Steady State (relaxation to an equilibrium or self-similar 

state)
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INGREDIENTS OF NUMERICAL SIMULATIONS 
(CONTINUED)

2. Mathematical Description: e.g., PDE
– Eulerian vs. Lagrangian (e.g., in MD)

3. Numerical Method: e.g., Discretization of the Physical 
Domain and/or Solving PDE
– Finite Difference Method
– Finite Element Method
– Boundary Integral Method

4. Supporting Numerical Methods

– Fast Fourier Transform
– Multigrid Method
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2. Numerical Methods

Example: Finite Difference Method



Finite Difference Method Allows You to 
Predict What Will Happen

- If you know the rate of 
change, you can 
predict what it will be 
after a certain amount 
of time

Rate of change 
=

Change in something
Change in time
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Predicting the future sometimes requires 
math

- If you know the rate of 
change, you can predict 
what it will be after a 
certain amount of time

- Example: an apple falling 
from a tree
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Predicting the future sometimes requires 
math

- If you know the rate of 
change, you can predict 
what it will be after a 
certain amount of time

- Example: an apple falling 
from a tree

Ave. velocity
Total time, t

vave =
1
2
at

y = vavet =
1
2
at 2
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But as Things Get More Complicated, You Need 
a Computer

- Or a 
computational 
cluster with 
thousands of 
CPUs

- Models often 
results in PDEs

- Discretization is 
required to 
solve it on a 
computer

The Flux cluster at the 
UM Modular Data Center
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DISCRETE REPRESENTATION OF A 
CONTINUOUS VARIABLE

Consider an independent continuous variable x ∈ [X1,X2]. We 
take the discrete representation, xi, of x to be 

Given a dependent function f(x) defined on the domain, a discrete 
approximation of f(x) is given by 

Similarly, given a differential equation on the domain, you can find 
a discrete representation of the equation. Such  representation 
is called the difference equation.

xi = X1 +
�i�1

�=1 �x�, 1 < i � N

fi = f(xi)

x1

X

! x! x! x!2 3 4

1

x x x x3 542
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QUALITY OF DISCRETE REPRESENTATION

The quality of the discrete representation depends on the 
resolution and the behavior of the discretized object.

Ensure adequate resolution by representing the smallest 
features by at least several points.

f(x)

x
j

f(x)

x

j

x

f

Poor Approximation Good Approximation

+
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WHAT ARE FINITE DIFFERENCE 
METHODS?

• Used to solve ODE or PDE.
• Based on the Taylor expansion.
• Probably the most simple method to understand.
• Discretization:

• Spatial: Divide space x ∈ [0,L] into N segments, Δx = 
L/N. Calculate derivatives of a function to use in solving 
a differential equation. Fix spatial coordinates (the 
Eulerian description).

• Temporal: Set a time step of size Δt, and calculate the 
new value of a function at t + Δt.

• There are many ways to discretize an equation; 
accuracy and stability depends on it.

• Turns differential equations into algebraic equations.
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CHARACTERIZATION OF DISCRETIZATION 
ACCURACY

Example: First Derivative of f(x)
The Taylor expansion of f(x) around xi gives f'(x), f''(x), etc.
Method 1. One-sided (forward) differencing on x

An approximation to a quantity is nth order accurate if nth order term in 
the Taylor expansion of the quantity is correctly reproduced.

f(xi+1)� f(xi) =

Taylor expansion for f(xi+1) around xi� ⌅⇤ ⇥
f(xi) + f �(xi)�x+

1

2
f ��(xi)�x2 + ... �f(xi)

⇥ f �(xi)�x+
1

2
f ��(xi)�x2

�⇤ f �(xi) =
f(xi+1)� f(xi)

�x
+ O(�x)⇤ ⇥� ⌅
truncation error
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Method 2. One-sided (backward) differencing on x

Method 3. Center differencing on x

f(xi)� f(xi�1) = f(xi)� (f(xi)� f ⇥(xi)�x+
1

2
f ⇥⇥(xi)�x2 � ...)

⇥ f ⇥(xi)�x� 1

2
f ⇥⇥(xi)�x2

�⇤ f ⇥(xi) =
f(xi)� f(xi�1)

�x
+ O(�x)⇤ ⇥� ⌅

truncation error

f(xi+1)� f(xi�1) ⇥ f(xi) + f ⇥(xi)�x+
1

2
f ⇥⇥(xi)�x2 +

1

6
f ⇥⇥⇥(xi)�x3

� (f(xi)� f ⇥(xi)�x+
1

2
f ⇥⇥(xi)�x2 � 1

6
f ⇥⇥⇥(xi)�x3)

= 2f ⇥(xi)�x+
1

3
f ⇥⇥⇥(xi)�x3

�⇤ f ⇥(xi) =
f(xi+1)� f(xi�1)

2�x
+ O(�x2)⇤ ⇥� ⌅
truncation error
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INTEGRATION OF ODE/INITIAL VALUE 
PROBLEM

First-order ODEs occur very commonly in physics, with the 
variable being time. An initial value problem is specified 
by a differential equation (or a set) for a function u(t) and 
its initial value, u(t = t0).

Consider an example:

We want to find an approximate solution. We’ll do this by 
step in time with size Δt, i.e., find u(t + Δt) given u(t). Let’s 
use the results we obtained for forward and centered 
differencing:

du
dt = f(u, t)

du

dt

����
t=tn

=

⇥
[u(tn+1)� u(tn)]/�t , Forward

[u(tn+1)� u(tn�1)]/2�t , Centered
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Take the forward differencing case (denoting the 
current time and value of u with tn and un, 
respectively):

You have a choice of which t to evaluate f(u, t). Since 
we do not know the value of u(t) at tn+1, let’s simply 
evaluate f(u, t) at t = tn.

This method is called the forward Euler time stepping.
The centered differencing leads to the Leap-Frog 

method, which is unstable.
For PDEs, the derivatives on the right hand side are 

also discretized in the same manner. 

un+1 = un + f(u, t) · �t

un+1 = un + f(un, tn) · �t
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TEMPORAL INTEGRATION SCHEMES

The schemes for integrating a differential equation in 
time can be divided into three categories.

Explicit Method The 
evaluation of a future 
quantity does not require 
the future value itself. 
The schemes on the 
previous page fall in this 
category.

!

t

f(t)

f(t )

f(t )

t

1

0

t

0

1

.

t

f(t )

0

First-Order Explicit Method
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where L1 and L2 are spatial differential operators. Sometimes 
only one of the differential operators benefit significantly from 
implicit treatment. In such cases, a technique called “operator 
splitting” is used which allows a different time-stepping 
scheme to each of the differential operators.

Implicit Method The 
evaluation of a future 
quantity requires the 
future value itself. This 
usually results in solving 
a matrix equation or 
iteration. 
Semi-implicit Method A 
PDE is often in the form 

�u
�t = (L1 + L2)u

22

f(t )1

!

f(t)

f(t )

t

0

t

1
f(t )

0 tt

.

1

First-Order Implicit Method

f(t1)

f(t1)
predicted
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3. Errors & Uncertainties



SOURCES OF ERRORS
Model Error: Differences between the physical system and the

�equivalent� as described by governing equations, initial
condition and boundary conditions.

Truncation or Discretization Error: This error results from
converting the analytical form of equations to a discretized
form that can be solved numerically. Error analysis gives you
an estimate of error. Accuracy depends on the resolution (in
both spatial and time coordinates).

Rounding Error: This error results from floating operations in
digital equipment. Accuracy of computational operations
generally receives little attention. Often, carrying enough
precision provides sufficient accuracy. However, in special
cases, care must be taken.
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MODELS
This is probably the most difficult issue to address and examine.
Questions:

• What approximations are made in deriving the governing 
equations? (e.g., sharp interface model). How good or bad 
are they?

• What effects excluded in the model are there, and what 
are the magnitude of the effects?

• Are you using physically consistent parameters? If not, 
what are the effects? (e.g., gradient coefficient)

• If there are input parameter/function to a model, how good 
are they? What are the range of errors, and how sensitive 
is your model to the changes in the input? (e.g., free 
energy, potential, etc.)
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DISCRETIZATION ERROR
The magnitude and behavior of error can be estimated by error 
analysis.

Ex. Verlet algorithm (for MD calculation)

As MD is a Lagrangian formulation (i.e., we follow the location 
of mass), the location of an atom needs to be evolved in time 
as prescribed by the force field. Given f(t) on the mass m at 
r(t), Verlet method gives the updated location by

r(t + ∆t) ≈ 2r(t) − r(t − ∆t) + (f (t)/m)∆t2

How much error is there in this approximation? O(∆t4).
There are in fact many ways to discretize a single equation. The accuracy (and 

stability) must be checked for each method-equation combination.
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ROUNDING ERROR
Computers represent numbers in binary

Single precision binary floating-point format (in a 32bit machine)

Double precision binary floating-point format

Each has specific maximum and minimum numbers & rounding error

From Wikipedia
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ROUNDING ERROR

• Cancellation error, e.g., a small difference such as 1 − exp(−δ)

when δ is small.

• Recursive relations, where errors can propagate/accumulate

and numerical instabilities may occur.

• Sums of terms with greatly varied magnitude, e.g.,
∑

∞

k=1
k−2(= π2/6). If summed from k = 1 until the change is

small, F90 single precision calculation gives only 4 digits of

accuracy (out of 9). If summed large to small, you get 8 digits

of accuracy.

ROUNDING ERROR
Can be important!

• Dynamical evolution or iteration not associated with minimization 
of residual error
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4. Validation & Verification
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Validation & Verification: Why?

Why is it important?  A simulation tool can become a black box.

Black box
- Dictionary definition: a usually complicated electronic 

device that functions and is packaged as a unit and whose 
internal mechanism is usually hidden from or mysterious to 
the user; broadly : anything that has mysterious or unknown 
internal functions or mechanisms
- As simulation codes get complex, it can become a black 

box.  The input may be of good quality, but it does not 
guarantee good output quality.
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Validation & Verification (V&V)
1. Numerical Accuracy (assuming bug-free) Easy to 

address.  The simplest way is to increase the 
resolution in space and time and the change is 
within the acceptable range (i.e., numerically 
converged).

2. Physical Assumptions (in the model) Sometimes 
difficult. If ignoring some effects (e.g., terms in 
equations), verify that the magnitude of the effect is 
small compared to other effects that are included 
(e.g., compare energies associated with different 
effects). Also check that this is true throughout the 
simulation if possible. Dimensionless numbers are 
often useful in determining the regimes that certain 
effects must be considered/can be ignored.
Ultimately, a direct comparison to experiment is the 
best, but it is not always possible. 

Dimensionless 
numbers in 
fluid dynamics
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Validation & Verification (Continued)

3. System Size System size is often limited by the computational
resources. Most physical systems have a much larger system size than 
those that can be simulated.

a. Edge Effect

• A simple cubic crystal of 1000 atoms has 49% (in 3D) of them on the 
surface, and the edge effect becomes important.
• Consider using periodic boundary conditions at the cell edges.

~500 
atoms
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Validation & Verification (Continued)
b. Size Effect
• If the periodic unit cell is too small compared to the feature 

within it, or if a point can see its own image, the results 
become influenced by the system size.

• This manifests as domination and damping of features with 
certain wavelengths as any fluctuation must be compatible 
with the imposed periodicity.

• Unless the size of the lattice is physically consistent, it may 
lead to unphysical effects, such as an artificial ordering.

• Verification: Study the effects of limited system size by using a 
smaller or (preferably) larger system and compare.
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Validation & Verification (Continued)

4. Code/method verification It is difficult to write a bug-free code!  

Test runs can often give indications for bugs.

a. Using analytical solutions

• Set up simulations that corresponds to setups that have

analytical solutions (Ex. Reaction-diffusion in cylinder); more later.

b. Using your physical intuition

• Always think about what you would 

expect to see from a simulation.  

Does the result make sense?

c. Unit tests

• Test piece by piece. 
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Validation & Verification (Continued)

4. Code/method verification (continued)
d. Method of Manufactured Solutions
• For the given PDE, add a forcing term and assume an analytical 

solution.  Obtain the analytical form of the forcing function.
e. Debugging
• Always start with small calculations!!
• Use debugger & check points
• Be detailed
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Use of Analytical Methods

Even if your goal is to study a system that is very complicated, 
it is always a good idea to simplify the problem and study it 
analytically.

The results can be used to validate your code, as it is always 
easy to set up a simple case in robust numerical simulation. 
This is important as it is not very difficult to leave a bug in a 
big codes. 

It also gives you an appreciation and understanding of the 
physical problem at a higher level. You may learn something 
new and get an extra publication on the side. 
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5. Programming

Good coding practice
Efficiency



Pointers on Programming (Discussion)

• Key: Break down the task into smaller pieces
- Outlines are helpful in doing this

• Identify repeated tasks and make a subroutine or function
• Stream-line the tasks by looking from the bird’s eye view (for 

the big picture)
• Get the details right by being meticulous
• Make the variable names something anyone can understand 
• Write in comments
• Use version control software
• Learn to use debugger
• Know how to check your solutions
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Efficiency in Computation
• CPU time efficiency
• Storage efficiency
• Programming efficiency (human time)

Ask:

1. How long would a calculation take?
2. How much memory/storage does it take? (Use 8 byte per
double precision)
3. How much time do I want to spend programming?

Find the limiting factor. If the computation takes too long using a
simple method, you would have to pay more attention to this
issue and compromise on others.
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Trade-offs: Example for Time stepping
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